首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Hao Liu  Bernard M. Gibbs 《Fuel》2002,81(3):271-280
A model for NO and N2O emissions from biomass-fired circulating fluidized bed (CFB) combustors has been developed and evaluated in this study. All the model parameters were chosen for a typical woody biomass-pinewood chips. Both drying and devolatilization of biomass particles were modelled with limited rates, which were selected from the literature based on woody biomass fuels. The partition of fuel-nitrogen between volatiles and char was also specifically chosen for pinewood based on available experimental data from the literature. Volatile nitrogen was assumed to consist of NH3, HCN and N2 with the distribution between three species as input parameters to the model. Twenty-five homogenous and heterogeneous global chemical reactions were included in the model, of which 20 reactions represents the global fuel-nitrogen reactions. Both gaseous and solid phase were assumed to be in plug flow. The model has been applied to the modelling of a 12 MWth CFB boiler. The predicted N2O emissions were always less than 5 ppmv for pinewood combustion, which was consistent with the experimental results. The predicted NO emissions increased with the total excess air of the riser and the fuel-N content while the predicted percentage conversion of fuel-N to NO decreased with increasing fuel-N content. The NO emissions were also predicted to decrease with increasing primary zone stoichiometry. These predictions agree with the experimental results. The predicted NO emissions decreased slightly with increasing bed temperature, whereas experiments showed that NO emissions slightly increased with bed temperature for birch chips combustion and did not change with bed temperature for fir chips combustion. Sensitivity analyses reveal that the reaction between NO and char is the key reaction to determine the NO emissions.  相似文献   

2.
In fluidised bed combustion heterogeneous reactions catalysed by the bed material, CaO, and char are significant for the emission levels for instance of NO, N2O, and CO. The catalysts present in the bed affect significantly the selectivity of HCN and NH3 oxidation, which are known as precursors of NOx (i.e. NO and NO2) and N2O emissions from solid fuel combustion. Thus the catalytic activity of biomass ashes may also be responsible for the negligible N2O emissions from biomass combustion due to the presence of a large amount of solids in fluidised bed combustion, homogeneous oxidation may be suppressed within the bed by the quenching of the radicals. For this reason the catalytic oxidation of hydrocarbons and CO on the bed material may be of significance for the total burnout within the fluidised bed combustor.Within this study the effect of different ashes from spruce wood, peat, and for comparison bituminous coal on the oxidation of CH4, CO, and HCN was studied. The different ashes were shown to have a strong catalytic activity for the oxidation of CH4, CO, and HCN. In HCN oxidation the selectivity towards NO is high, whereas very little N2O is formed. The activity of the ashes is strongly dependent on the fuel, which may be explained by their composition.The kinetics of the oxidation of CO and HCN in the temperature range relevant for fluidised bed combustion, i.e. 800-900 °C, has been evaluated for spruce wood ash.  相似文献   

3.
Oxy-fuel Circulating Fluidized Bed (CFB) combustion technology, a very promising technology for CO2 capture, combines many advantages of oxy-fuel and CFB technologies. Experiments were carried out in a 50 kWth CFB facility to investigate how operation parameters influence the NO emission in O2/CO2 atmospheres. The simulated O2/CO2 atmospheres were used without recycling the flue gas. Results show that NO emission in 21% O2/79% CO2 atmosphere is lower than that in air atmosphere because of lower temperature and higher char and CO concentrations in the dense bed. Elevating O2 concentration from 21% to 40% in O2/CO2 atmosphere enhances fuel-N conversion to NO. Increasing bed temperature or oxygen/fuel stoichiometric ratio brings higher NO emission in O2/CO2 atmosphere, which is consistent with the results in air-fired CFB combustion. As primary stream fraction increases, NO emission increases more rapidly in O2/CO2 atmosphere than that in air atmosphere. Stream staging is more efficient for controlling NO emission in oxy-CFB combustion than that in air combustion. Oxygen staging provides an efficient way to reduce NO emission in oxy-CFB combustion without influencing the hydrodynamic characteristic in the riser.  相似文献   

4.
Flue-gas recycling combustion of a sub-bituminous coal and its rapid pyrolysis char at 1120 K has been simulated experimentally in a bubbling fluidized-bed. O2, CO2 and H2O, and NO or N2O were pre-mixed and fed into the bed together with coal/char particles with the O2 concentration in the exit gas maintained at 3.5 vol%. Increasing the inlet O2 concentration, thus increasing the O2 consumption rate and decreasing the flue-gas recycling ratio, caused the once-through conversion of fuel-bound nitrogen into N2O to decrease while the conversion to NO to remain unchanged. The in-bed reductions of NO and N2O were both first order with respect to the respective nitrogen oxide, with the rate constants to increase linearly with the rate of O2 consumption in the bed and thus also with that of char/volatiles consumption. This finding, which indicated linear increase in the concentrations of reactive species involved in NO/N2O reduction with the rate of O2 consumption, enabled consideration that the homogeneous and heterogeneous reduction rates of NO and N2O were proportional to the consumption rates of O2 by the volatiles and char, respectively. The rate analysis of the kinetic data revealed the relative importance of burning volatiles and char as the agents for the reduction of NO and N2O. While the reduction in the gas phase was fully responsible for the NO-to-N2O conversion, the reactions over the char surface governed the NO-to-N2 reduction. The volatiles and char had comparable contributions to the reduction of N2O to N2. The NO-to-N2 and N2O-to-N2 reductions over the char surface were, respectively, accelerated and decelerated by increasing the H2O concentration.  相似文献   

5.
An incineration test of a toxic chemical organic waste liquid was conducted on a circulating fluidized bed (CFB) incinerator. The flue gas was measured online with the advanced SAE-19 flue gas analyzer. The effects of several factors, in terms of flow rate of waste liquid, ratio of waste liquid injected into dense bed of the CFB, excess air coefficient, the secondary air fraction and bed temperature on NO x emissions, were verified. The experimental results show that NO emissions in flue gas increase with increase in the flow rate of the waste liquid injected into the bed or the excess air coefficient or the bed temperature and those decrease with increase in the ratio of waste liquid injected into the dense bed of the CFB or the secondary air fraction. During the test runs, NO x concentration in flue gas met the national regulation on NO x emissions due to suppressive effect of low temperature and staged combustion in CFB on NO x formation. This paper was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

6.
Understanding the char grate‐fired process is key to developing a low‐nitric oxide (NO) technology for industrial boilers. In this work, char combustion and NO emissions during a grate‐fired process were studied in a small‐scale one‐dimensional fixed‐bed system by adjusting the char/oxygen (O2) ratio. Evolution of the surface temperature of the char bed was measured using an infrared temperature measurement system. As the char/O2 ratio increased, a reaction layering of the char bed occurred. The char bed can be divided into oxygen‐absent and ‐present parts in time, and into reduction and oxidation layers in space. This kind of division was determined by the complete oxidation layer that could deplete all O2. The reduction layer could reduce NO emissions well. With the increase of the char/O2 ratio, the char mass proportion of the oxygen‐absent part increased, while that of the oxygen‐present decreased; and the NO emissions and conversion rate of char nitrogen decreased. When combustion began, char started to burn and released a large amount of heat, and the surface temperatures of both the oxidation and reduction layers increased, with a larger rise of the former of about 260 °C. As the reaction proceeded, the surface temperature of the oxidation layer gradually decreased, while that of the reduction layer increased until the char bed was burnt through.  相似文献   

7.
A new technique of achieving high temperature air was adopted by combustion in high excess air ratio in a circulating fluidized bed (CFB). Experiments on pulverized coal combustion in high temperature air from the CFB were made in a down-fired combustor with the diameter of 220 mm and the height of 3000 mm. High temperature air with lower oxygen concentrations can be achieved steadily and continuously by combustion in the circulating fluidized bed. Pulverized coal combustion in high temperature air shows a uniform temperature profile along the axis of the down-fired combustor and the combustion efficiency is 99.8%. The NOx emission is 390 mg/m3, 13% lower than the regulation for thermal power plants in China. The HCN and NH3 emissions, as well as N2O, are about zero in the exhaust.  相似文献   

8.
A study of the mathematical modelling of NO formation and emissions in a gas-fired regenerative furnace with high-preheated air was performed. The model of NO formation via N2O-intermediate mechanism was proposed because of the lower flame temperature in this case. The reaction rates of this new model were calculated basing on the eddy-dissipation-concept. This model accompanied with thermal-NO, prompt-NO and NO reburning models were used to predict NO emissions and formations. The sensitivity of the furnace temperature and the oxygen availability on NO generation rate has been investigated. The predicted results were compared with experimental values.The results show that NO emission formed by N2O-intermediate mechanism is of outstanding importance during the high-temperature air combustion (HiTAC) condition. Furthermore, it shows that NO models with N2O-route model can give more reasonable profile of NO formation. Additionally, increasing excess air ratio leads to increasing of NO emission in the regenerative furnace.  相似文献   

9.
《Fuel》2003,82(15-17):1845-1850
Fluidised bed combustion (FBC) is a versatile and relative clean technology except with respect to nitrous oxide (N2O) emissions. The emissions of N2O from FBCs are very dependent on a number of operating conditions (temperature, sorbent addition, excess oxygen, etc.), fuel characteristics and many homogeneous and heterogeneous reactions that take place.This paper describes the results obtained during the study of the effect of coal type on N2O emissions from FBC. The combustion tests were performed in a circulating fluidised bed pilot plant, using two coals: a Spanish subbituminous (Puertollano) and a bituminous coal from Colombia (Carbocol). Using supporting laboratory-scale fluidised bed pyrolysis experimental data with these fuels the partitioning of fuel-N and the formation of the most important N2O precursors, NH3, HCN and char was followed. The pyrolysis tests results showed that the major part of the nitrogen remained in the char. Both coals a produced similar amount of HCN, but the amount of char-N was lower with Carbocol coal that with Puertollano coal. The combustion results showed that the conversion of fuel-N to N2O was higher on the tests with Puertollano coal than with Carbocol coal. For this it was concluded that the formation of N2O via char-N oxidation was the most important pathway. The temperature profile of the combustor and the sorbent addition strongly influence N2O emissions.  相似文献   

10.
In this paper, a comprehensive computational fluid dynamics (CFD) modelling study was undertaken by integrating the combustion of pulverized dry lignite in several combustion environments. Four different cases were investigated: an air-fired and three different oxy-fuel combustion environments (25 vol.% O2 concentration (OF25), 27 vol.% O2 concentration (OF27), and 29 vol.% O2 concentration (OF29) were considered. The chemical reactions (devolatilization and char burnout), convective and radiative heat transfer, fluid and particle flow fields (homogenous and heterogenous processes), and turbulent models were employed in 3-D hybrid unstructured grid CFD simulations. The available experimental results from a lab-scale 100 KW firing lignite unit (Chalmer’s furnace) were selected for the validation of these simulations. The aerodynamic effect of primary and secondary registers of the burner was included through swirl at the burner inlet in order to achieve the flame stability inside the furnace. Validation and comparison of all the combustion cases with the experimental data were made by using the temperature distribution profiles and species concentration (O2, CO2, and H2O) profiles at the most intense combustion locations of the furnace. The overall visualization of the flame temperature distributions and oxygen concentrations were presented in the upper part of the furnace. The numerical results showed that the flame temperature distributions and O2 consumptions of the OF25 case were approximately similar to the reference combustion case. In contrast, in the OF27 and OF29 combustion cases, the flame temperatures were higher and more confined in the closest region of the burner exit plane. This was a result of the quick consumption of oxygen that led to improve the ignition conditions in the latter combustion cases. Therefore, it is concluded that the resident time, stoichiometry, and recycled flue gas rates are relevant parameters to optimize the design of oxy-fuel furnaces. The findings showed reasonable agreement with the qualitative and quantitative measurements of temperature distribution profiles and species concentration profiles at the most intense combustion locations inside the furnace. These numerical results can provide useful information towards future modelling of the behaviour of pulverized brown coal in a large-scale oxy-fuel furnace/boiler in order to optimize the burner’s and combustor’s design.  相似文献   

11.
Lisachenko  A.A.  Chikhachev  K.S.  Zakharov  M.N.  Basov  L.L.  Shelimov  B.N.  Subbotina  I.R.  Che  M.  Coluccia  S. 《Topics in Catalysis》2002,20(1-4):119-128
The kinetics of photoinduced reactions that occur upon UV irradiation (<360 nm) of a MoO3/SiO2 catalyst (2.5 wt% Mo) in CO-NO mixtures and CO alone are studied at gas pressures from 0.05 to 2 torr and for CO/NO ratios from 0.3 to 3.0 in the temperature interval 20-150C. The data obtained are consistent with a previously proposed two-stage redox mechanism. In the first stage NO is reduced to N2O through the reaction CO+2NO CO2+N2O, while in the second stage the N2O formed is further reduced to N2 via the reaction CO+N2O CO2+N2. The ratio of rate constants for quenching of a transient excited state (Mo5+-O-)* by NO and CO molecules is found to be 2.8. The reaction rates decrease with increasing temperature, apparently because of a lower concentration of adsorbed species and/or a reduction of the steady-state concentration of (Mo5+-O-)*.  相似文献   

12.
A study of N2O decomposition reaction over a bed of CaO particles in a fixed bed reactor has been conducted. Effects of parameters such as concentration of inlet N2O, reaction temperature and effects of CO, CO2, O2, and NO gas presented in the combustion gas environment have been investigated. The experiment showed that the N2O decomposition reaction was accelerated by the increase of reaction temperature, and the existence of CO, while the reaction was hindered by the existence of CO2, NO. O2 also affected the N2O decomposition. Heterogeneous gas-solid reaction kinetics were proposed for the reaction conditions and compared with homogeneous reaction kinetics.  相似文献   

13.
A. Ribeirete 《Fuel》2009,88(1):40-1464
The aim of the present work was to evaluate the performance of a pulverized-coal-fired large-scale laboratory furnace with air staging. New data are reported for gas phase species concentration, temperature and particle burnout for two primary zone stoichiometric ratios, 1.15 (unstaged flame) and 0.95 (staged flame), other operating conditions being fixed. The results revealed that the reduction in primary zone stoichiometric ratio caused a decrease in NOx emissions from 421 to 180 mg/N m3@6%O2, an increase in CO emissions from 51 to 168 mg/N m3@6%O2 and a reduction in particle burnout from 81.8% to 76.5%. It was concluded that the reduction of the O2 availability in the primary zone inhibits the NO formation, mainly via the fuel mechanism, but it affects negatively both the CO and the char oxidation processes because, under staging conditions, both processes tend to occur in the vicinity of the over fire air injection region, where the temperatures are relatively low.  相似文献   

14.
SNCR脱硝特性的模拟及优化   总被引:10,自引:9,他引:10       下载免费PDF全文
对某台使用尿素为还原剂的100 t·h-1循环流化床锅炉的SNCR性能进行了CFD数值模拟,分析了温度、氨氮摩尔比等影响因素对SNCR脱硝效率、氨泄漏以及N2O浓度的影响规律。结果表明,SNCR最佳温度窗口的范围为850~1050℃,且随着氨氮比的增大,温度窗口范围变宽;随着温度的升高,氨逃逸量明显下降,当温度超过940℃后,氨逃逸量基本可以忽略不计,而N2O的生成量则呈现出先增大后减少的趋势。随着氨氮摩尔比的增加,脱硝效率逐渐增大,980℃左右达到峰值;氨泄漏随氨氮摩尔比的增加而增大;N2O浓度与脱硝效率呈正比关系,最大生成量约为30 μl·L-1。  相似文献   

15.
Oxy-steam combustion is a promising next-generation combustion technology. Conversions of fuel-N, volatile-N, and char-N to NO and N2O during combustion of a single coal particle in O2/N2 and O2/H2O were studied in a tube reactor at low temperature. In O2/N2, NO reaches the maximum value in the devolatilization stage and N2O reaches the maximum value in the char combustion stage. In O2/H2O, both NO and N2O reach the maximum values in the char combustion stage. The total conversion ratios of fuel-N to NO and N2O in O2/N2 are obviously higher than those in O2/H2O, due to the reduction of H2O on NO and N2O. Temperature changes the trade-off between NO and N2O. In O2/N2 and O2/H2O, the conversion ratios of fuel-N, volatile-N, and char-N to NO increase with increasing temperature, and those to N2O show the opposite trends. The conversion ratios of fuel-N, volatile-N, and char-N to NO reach the maximum values at < O2 > = 30 vol% in O2/N2. In O2/H2O, the conversion ratios of fuel-N and char-N to NO reach the maximum values at < O2 > = 30 vol%, and the conversion ratio of volatile-N to NO shows a slightly increasing trend with increasing oxygen concentration. The conversion ratios of fuel-N, volatile-N, and char-N to N2O decrease with increasing oxygen concentration in both atmospheres. A higher coal rank has higher conversion ratios of fuel-N to NO and N2O. Anthracite coal exhibits the highest conversion ratios of fuel-N, volatile-N, and char-N to NO and N2O in both atmospheres. This work is to develop efficient ways to understand and control NO and N2O emissions for a clean and sustainable atmosphere.  相似文献   

16.
A study of N2O decomposition reaction in a fixed bed a reactor over bed of CaO particles has been conducted. Effects of parameters such as concentration of inlet N2O gas, reacting temperature and content of CO2/ CO gas present in the reacting materials on the decomposition reaction have been investigated. The results showed that the conversion of N2O decomposition was accelerated by the increase of reaction temperature, and the existence of CO, while the rate was hindered by the existence of CO2. Heterogeneous gas solid reaction kinetics was proposed for N2O decomposition and compared with homogeneous reaction kinetics. Presented at the Int’l Symp. on Chem. Eng. (Cheju, Feb. 8–10, 2001), dedicated to Prof. H. S. Chun on the occasion of his retirement from Korea University.  相似文献   

17.
The paper presents a model of coal combustion in air and oxygen-enriched CFB environment. A computer program to calculate the CO2, CO, SO2, NOx and O2 emissions from the combustion of solid fuels in a circulating fluidized bed boiler was created. The validity of this program was verified by measurements on a 0.1MWth OxyFuel-CFB Test Rig.The calculations have been carried out for air and so-called oxy-fuel conditions, i.e. when combustion runs in a gas mixture based on O2 and N2, with various fractions of oxygen.The comparison between measured and predicted by model CO, SO2, NOx and O2 emissions is shown in this paper. The results of the calculation showed, that the kinetic equations of some reaction have to be modified. Authors propose to use the reaction surface area instead of the specific internal surface area of char in rate constant formulas as the combustion nature changes from internal-kinetic to external-diffusion controlling regime.  相似文献   

18.
This paper is concerned with the chemical looping combustion of coal in a technique whereby the fuel is gasified in situ using CO2 in the presence of a batch of supported copper oxide (the “oxygen carrier”) in a single reactor. As the metal oxide becomes depleted, the feed of fuel is discontinued, the inventory of fuel is reduced by further gasification and then the contents are re-oxidised by the admission of air to the reactor, to begin the cycle again. A catalyst support, impregnated with a saturated solution of copper and aluminium nitrates, acted as a durable oxygen carrier over numerous cycles of reduction and oxidation, using air as the oxidant. Two bituminous coals (Taldinskaya, Russia, and Illinois No. 5, USA) were investigated and compared with a lignite (Hambach, Germany). The lignite was highly reactive and was gasified completely by 15 mol% CO2 in N2 at 1203 K and 1 bar, so that there was no build up of char in the bed. The bituminous coals produced chars much less reactive than the lignite char, so that there was a steady accumulation of char in the bed with number of cycles, with the degree of accumulation being dependent on the reactivity of the char. Since the kinetics of gasification by CO2 of the chars from either bituminous coal were slow, their rates were controlled by intrinsic chemical kinetics and were not affected by the ability of the oxygen carrier to alter the rates of external mass transfer when gasification is rapid. However, it is likely that rates of gasification in the presence of the carrier are still larger than in its absence, owing to the overall lower [CO] present in the bulk of the fluidised bed during chemical looping. At the temperature used, the carrier was cycling between Cu and Cu2O, since CuO is only stable if the partial pressure of O2 exceeds 0.03 bar at 1203 K. The CuO decomposes to Cu2O and O2 relatively rapidly at these temperatures, once the oxygen concentration is effectively zero. It was impossible to ascertain in our experiments whether the oxygen so generated, after the switching of the air for nitrogen before the start of the succeeding cycle of gasification, made any substantial difference to the reactivity of the char present in the bed. The rate of oxidation of the carrier was found to be much more rapid than the rate of oxidation of the inventory of char. This allows a preferential oxidation of the carrier and most likely accounts for why progressively less CO and CO2 is produced during successive cycles with short periods of oxidation: the increasingly reduced carrier reacts more rapidly than the char. There was no obvious impact from the sulphur contained in the fuels, but longer-term testing is needed. No agglomeration between the carrier particles and the ash was observed, despite the high temperatures during oxidation.  相似文献   

19.
《Fuel》2007,86(10-11):1465-1474
This paper presents a computational study of the combustion process of wood pellets in a small-scale grate fired furnace. The objectives were to obtain detailed information on the combustion characteristics and NO formation in the furnace, and to examine the effect of secondary air on the combustion process. The simulation results were compared with experimental data in terms of flame temperature and distributions of species concentrations, including CO and NO. It was shown that the combustion process is strongly controlled by the inflow turbulence from the secondary and tertiary air jets. The combustion process is not sensitive to the bed combustion process in the present test case. The high speed air flow from the secondary and tertiary air inlets ‘destroys’ the history of the effluent volatile gases from the fuel bed. Different paths for the NO emission were investigated, including the thermal NO, the fuel-NO and NO from the N2O intermediate mechanisms. The fuel-NO path is responsible for the rapid NO increase and the high NO peak near the fuel bed. Fuel-NO is rather low far downstream owing to the rather low nitrogen content in the fuel (less than 0.1% on mass basis), and the de-NOx reactions with NH3. NO is likely formed from the N2O intermediate mechanism far downstream.  相似文献   

20.
Xiaolin Wei  Yang Wang  Dianfu Liu  Hongzhi Sheng 《Fuel》2009,88(10):1998-2003
The influence of HCl on CO and NO emissions was experimentally investigated in an entrained flow reactor (EFR) and an internally circulating fluidized bed (ICFB). The results in EFR show the addition of HCl inhibits CO oxidation and NO formation at 1073 K and 1123 K. At the lower temperature (1073 K) the inhibition of HCl becomes more obvious. In ICFB, chlorine-containing plastic (PVC) was added to increase the concentration of HCl during the combustion of coal or coke. Results show that HCl is likely to enhance the reduction of NO and N2O. HCl greatly increases CO and CH4 emission in the flue gas. A detailed mechanism of CO/NO/HCl/SO2 system was used to model the effect of HCl in combustion. The results indicate that HCl not only promotes the recombination of radicals O, H, and OH, but also accelerates the chemical equilibration of radicals. The influence of HCl on the radicals mainly occurs at 800-1200 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号