首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dolomite modified with acetic acid solution was proposed as a CO2 sorbent for calcination/carbonation cycles. The carbonation conversions for modified and original dolomites in a twin fixed-bed reactor system with increasing the numbers of cycles were investigated. The carbonation temperature in the range of 630 °C–700 °C is beneficial to the carbonation reaction of modified dolomite. The carbonation conversion for modified dolomite is significantly higher than that for original sorbent at the same reaction conditions with increasing numbers of reaction cycles. The modified dolomite exhibits a carbonation conversion of 0.6 after 20 cycles, while the unmodified sorbent shows a conversion of 0.26 at the same reaction conditions, which is calcined at 920 °C and carbonated at 650 °C. At the high calcination temperature over 920 °C modified dolomite can maintain much higher conversion than unmodified sorbent. The mean grain size of CaO derived from modified dolomite is smaller than that from original sorbent with increasing numbers of reaction cycles. The calcined modified dolomite possesses greater surface area and pore volume than calcined original sorbent during the multiple cycles. The pore volume and pore area distributions for calcined modified dolomite are also superior to those for calcined unmodified sorbent during the looping cycle. The modified dolomite is proved as a new and promising type of regenerable CO2 sorbent for industrial applications.  相似文献   

2.
The Ca‐based sorbent looping cycle represents an innovative way of CO2 capture for power plants. However, the CO2 capture capacity of the Ca‐based sorbent decays sharply with calcination/carbonation cycle number increasing. In order to improve the CO2 capture capacity of the sorbent in the Ca looping cycle, limestone was modified with acetic acid solution. The cyclic carbonation behaviors of the modified and original limestones were investigated in a twin fixed‐bed reactor system. The modified limestone possesses better cyclic carbonation kinetics than the original limestone at each cycle. The modified limestone carbonated at 640–660 °C achieves the optimum carbonation conversion. The acetic acid modification improves the long‐term performance of limestone, resulting in directly measured conversion as high as 0.4 after 100 cycles, while the original limestone remains at a conversion of less than 0.1 at the same reaction conditions. Both the pore volume and pore area distributions of the calcines derived from the modified limestone are better than those derived from the original limestone. The CO2 partial pressure for carbonation has greater effect on conversion of the original limestone than on that of the modified sorbent because of the difference in their pore structure characteristics. The carbonation conversion of the original limestone decreases with the increase in particle size, while the change in particle size of the modified sorbent has no clear effect on cyclic carbonation behavior.  相似文献   

3.
This study focuses on enhancing CO2 uptake by modifying limestone with acetate solutions under pressurized carbonation condition. The multicycle tests were carried out in an atmospheric calcination/pressurized carbonation reactor system at different temperatures and pressures. The pore structure characteristics (BET and BJH) were measured as a supplement to the reaction studies. Compared with the raw limestone, the modified sorbent showed a great improvement in CO2 uptake at the same reaction condition. The highest CO2 uptake was obtained at 700 °C and 0.5 MPa, by 88.5% increase over the limestone at 0.1 MPa after 10 cycles. The structure characteristics of the sorbents on N2 absorption and SEM confirm that compared with the modified sorbent, the effective pores of limestone are greatly driven off by sintering, which hinders the easy access of CO2 molecules to the unreacted-active sites of CaO. The morphological and structural properties of the modified sorbent did not reveal significant differences after multiple cycles. This would explain its superior performance of CO2 uptake under pressurized carbonation. Even after 10 cycles, the modified sorbent still achieved a CO2 uptake of 0.88.  相似文献   

4.
The calcium‐based sorbent cyclic calcination/carbonation reaction is an effective technique for capturing CO2 from combustion processes. The CO2 capture capacity for CaO modified with ethanol/water solution was investigated over long‐term calcination/carbonation cycles. In addition, the SEM micrographs and pore structure for the calcined sorbents were analyzed. The carbonation conversion for CaO modified with ethanol/water solution is greater than that for CaO hydrated with distilled water and is much higher than that for calcined limestone. Modified CaO achieves the highest conversion for carbonation at the range of 650–700 °C. Higher values of ethanol concentration in solution result in higher carbonation conversion for modified CaO, and lead to better anti‐sintering performance. After calcination, the specific surface area and pore volume for modified CaO are higher than those for hydrated CaO, and are much greater than those for calcined limestone. The ethanol molecule enhances H2O molecule affinity and penetrability to CaO in the hydration reaction so that the pores in CaO modified are obviously expanded after calcination. CaO modified with ethanol/water solution can act as a new and promising type of calcium‐based regenerable CO2 sorbent for industrial applications.  相似文献   

5.
This study examines the CO2 capture behavior of KMnO4-doped CaO-based sorbent during the multiple calcination/carbonation cycles. The cyclic carbonation behavior of CaCO3 doped with KMnO4 and the untreated CaCO3 was investigated. The addition of KMnO4 improves the cyclic carbonation rate of the sorbent above carbonation time of 257 s at each carbonation cycle. When the mass ratio of KMnO4/CaCO3 is about 0.5-0.8 wt.%, the sorbent can achieve an optimum carbonation conversion during the long-term cycles. The carbonation temperature of 660-710 °C is beneficial to cyclic carbonation of KMnO4-doped CaCO3. The addition of KMnO4 improves the long-term performance of CaCO3, resulting in directly measured conversion as high as 0.35 after 100 cycles, while the untreated CaCO3 retains conversion less than 0.16 at the same reaction conditions. The addition of KMnO4 decreases the surface area and pore volume of CaCO3 after 1 cycle, but it maintains the surface area and pores between 26 nm and 175 nm of the sorbent during the multiple cycles. Calculation reveals that the addition of KMnO4 improves the CO2 capture efficiency significantly using a CaCO3 calcination/carbonation cycle and decreases the amount of the fresh sorbent.  相似文献   

6.
The calcination/carbonation loop of calcium-based (Ca-based) sorbents is considered as a viable technique for CO2 capture from combustion gases. Recent attempts to improve the CO2 uptake of Ca-based sorbents by adding calcium lignosulfonate (CLS) with hydration have succeeded in enhancing its effectiveness. The optimum mass ratio of CLS/CaO is 0.5 wt.%. The reduction in particle size and grain size of CaO appeared to be parts of the reasons for increase in CO2 capture. The primary cause of increase in reactivity of the modified sorbents was the ability of the CLS to retard the sintering rate and thus to remain surface area and pore volume for reaction. The CO2 uptake of the modified sorbents was also enhanced by elevating the carbonation pressure. Experimental results indicate that the optimal reaction condition of the modified sorbents is at 0.5 MPa and 700 °C and a high conversion of 0.7 is achieved after 10 cycles, by 30% higher than that of original limestone, at the same condition.  相似文献   

7.
Rice husk ash/CaO was proposed as a CO2 sorbent which was prepared by rice husk ash and CaO hydration together. The CO2 capture behavior of rice husk ash/CaO sorbent was investigated in a twin fixed bed reactor system, and its apparent morphology, pore structure characteristics and phase variation during cyclic carbonation/calcination reactions were examined by SEM-EDX, N2 adsorption and XRD, respectively. The optimum preparation conditions for rice husk ash/CaO sorbent are hydration temperature of 75 °C, hydration time of 8 h, and mole ratio of SiO2 in rice husk ash to CaO of 1.0. The cyclic carbonation performances of rice husk ash/CaO at these preparation conditions were compared with those of hydrated CaO and original CaO. The temperature at 660 °C–710 °C is beneficial to CO2 absorption of rice husk ash/CaO, and it exhibits higher carbonation conversions than hydrated CaO and original CaO during multiple cycles at the same reaction conditions. Rice husk ash/CaO possesses better anti-sintering behavior than the other sorbents. Rice husk ash exhibits better effect on improving cyclic carbonation conversion of CaO than pure SiO2 and diatomite. Rice husk ash/CaO maintains higher surface area and more abundant pores after calcination during the multiple cycles; however, the other sorbents show a sharp decay at the same reaction conditions. Ca2SiO4 found by XRD detection after calcination of rice husk ash/CaO is possibly a key factor in determining the cyclic CO2 capture behavior of rice husk ash/CaO.  相似文献   

8.
The cyclic carbonation performances of shells as CO2 sorbents were investigated during multiple calcination/carbonation cycles. The carbonation kinetics of the shell and limestone are similar since they both exhibit a fast kinetically controlled reaction regime and a diffusion controlled reaction regime, but their carbonation rates differ between these two regions. Shell achieves the maximum carbonation conversion for carbonation at 680–700 °C. The mactra veneriformis shell and mussel shell exhibit higher carbonation conversions than limestone after several cycles at the same reaction conditions. The carbonation conversion of scallop shell is slightly higher than that of limestone after a series of cycles. The calcined shell appears more porous than calcined limestone, and possesses more pores > 230 nm, which allow large CO2 diffusion‐carbonation reaction rates and higher conversion due to the increased surface area of the shell. The pores of the shell that are greater than 230 nm do not sinter significantly. The shell has more sodium ions than limestone, which probably leads to an improvement in the cyclic carbonation performance during the multiple calcination/carbonation cycles.  相似文献   

9.
One promising method for the capture of CO2 from point sources is through the usage of a lime-based sorbent. Lime (CaO) acts as a CO2 carrier, absorbing CO2 from the flue gas (carbonation) and releasing it in a separate reactor (calcination) to create a pure stream of CO2 suitable for sequestration. One of the challenges with this process is the decay in calcium utilization (CO2 capture capacity) during carbonation/calcination cycling. The reduction in calcium utilization of natural limestone over large numbers of cycles (>250) was studied. Cycling was accomplished using pressure swing CO2 adsorption in a pressurized thermogravimetric reactor (PTGA). The effect of carbonation pressure on calcium utilization was studied in CO2 with the reactor operated at 1000 °C. The pressure was cycled between atmospheric pressure for calcination, and 6, 11 or 21 bar for carbonation. Over the first 250 cycles, the calcium utilization reached a near-asymptotic value of 12.5-27.7%, depending on the cycling conditions. Pressure cycling resulted in improved long-term calcium utilization compared to temperature swing or CO2 partial pressure swing adsorption under similar conditions. An increased rate of de-pressurization caused an increase in calcium utilization, attributed to fracturing of the sorbent particle during the rapid calcination, as observed via SEM analysis.  相似文献   

10.
The intrinsic rate constants of the CaO-CO2 reaction, in the presence of syngas, were studied using a grain model for a naturally occurring calcium oxide-based sorbent using a thermogravimetric analyzer. Over temperatures ranging from 580 to 700 °C, it was observed that the presence of CO and H2 (with steam) during carbonation caused a significant increase in the initial rate of carbonation, which has been attributed to the CaO surface sites catalyzing the water-gas shift reaction, increasing the local CO2 concentration. The water-gas shift reaction was assumed to be responsible for the increase in activation energy from 29.7 to 60.3 kJ/mol for limestone based on the formation of intermediate complexes. Changes in microporosity due to particle sintering during calcination have been credited with the rapid initial decrease in cyclic CaO maximum conversion for limestone particles, whereas the presence of steam during carbonation has been shown to improve the long-term maximum conversion in comparison to previous studies without steam present.  相似文献   

11.
Carbonation of fly ash in oxy-fuel CFB combustion   总被引:1,自引:0,他引:1  
Chunbo Wang  Yewen Tan 《Fuel》2008,87(7):1108-1114
Oxy-fuel combustion of fossil fuel is one of the most promising methods to produce a stream of concentrated CO2 ready for sequestration. Oxy-fuel FBC (fluidized bed combustion) can use limestone as a sorbent for in situ capture of sulphur dioxide. Limestone will not calcine to CaO under typical oxy-fuel circulating FBC (CFBC) operating temperatures because of the high CO2 partial pressures. However, for some fuels, such as anthracites and petroleum cokes, the typical combustion temperature is above 900 °C. At CO2 concentrations of 80-85% (typical of oxy-fuel CFBC conditions with flue gas recycle) limestone still calcines, but when the ash cools to the calcination temperature, carbonation of fly ash deposited on cool surfaces may occur. This phenomenon has the potential to cause fouling of the heat transfer surfaces in the back end of the boiler, and to create serious operational difficulties. In this study, fly ash generated in a utility CFBC boiler was carbonated in a thermogravimetric analyzer (TGA) under conditions expected in an oxy-fuel CFBC. The temperature range investigated was from 250 to 800 °C with CO2 concentration set at 80% and H2O concentrations at 0%, 8% and 15%, and the rate and the extent of the carbonation reaction were determined. Both temperature and H2O concentrations played important roles in determining the reaction rate and extent of carbonation. The results also showed that, in different temperature ranges, the carbonation of fly ash displayed different characteristics: in the range 400 °C < T ? 800 °C, the higher the temperature the higher the CaO-to-carbonate conversion ratio. The presence of H2O in the gas phase always resulted in higher CaO conversion ratio than that obtainable without H2O. For T ? 400 °C, no fly ash carbonation occurred without the presence of H2O in the gas phase. However, on water vapour addition, carbonation was observed, even at 250 °C. For T ? 300 °C, small amounts of Ca(OH)2 were found in the final product alongside CaCO3. Here, the carbonation mechanism is discussed and the apparent activation energy for the overall reaction determined.  相似文献   

12.
Calcium oxide has been proved to be a suitable sorbent for high temperature CO2 capture processes based on the cyclic carbonation‐calcination reaction. It is important to have reaction rate models that are able to describe the behavior of CaO particles with respect to the carbonation reaction. Fresh calcined lime is known to be a reactive solid toward carbonation, but the average sorbent particle in a CaO‐based CO2 capture system experiences many carbonation‐calcination cycles and the reactivity changes with the number of cycles. This study applies the random pore model (RPM) to estimate the intrinsic rate parameters for the carbonation reaction and develops a simple model to calculate particle conversion with time as a function of the number of cycles, partial pressure of CO2, and temperature. This version of the RPM model integrates knowledge obtained in earlier works on intrinsic carbonation rates, critical product layer thickness, and pore structure evolution in highly cycled particles. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

13.
Vasilije Manovic  Edward J. Anthony 《Fuel》2008,87(8-9):1564-1573
The steam hydration reactivation characteristics of three limestone samples after multiple CO2 looping cycles are presented here. The CO2 cycles were performed in a tube furnace (TF) and the resulting samples were hydrated by steam in a pressure reactor (PR). The reactivation was performed with spent samples after carbonation and calcination stages. The reactivation tests were done with a saturated steam pressure at 200 °C and also at atmospheric pressure and 100 °C. The characteristics of the reactivation samples were examined using BET and BJH pore characterization (for the original and spent samples, and samples reactivated under different conditions) and also by means of a thermogravimetric analyzer (TGA). The levels of hydration achieved by the reactivated samples were determined as well as the conversions during sulphation and multiple carbonation cycles. It was found that the presence of a CaCO3 layer strongly hinders sorbent hydration and adversely affects the properties of the reactivated sorbent with regard to its behavior in sulphation and multiple carbonation cycles. Here, hydration of calcined samples under pressure is the most effective method to produce superior sulphur sorbents. However, reactivation of calcined samples under atmospheric conditions also produces sorbents with significantly better properties in comparison to those of the original sorbents. These results show that separate CO2 capture and SO2 retention in fluidized bed systems enhanced by steam reactivation is promising even for atmospheric conditions if the material for hydration is taken from the calciner.  相似文献   

14.
Vasilije Manovic 《Fuel》2011,90(1):233-239
CaO-based pellets supported with aluminate cements show superior performance in carbonation/calcination cycles for high-temperature CO2 capture. However, like other CaO-based sorbents, their CO2 carrying activity is reduced after increasing numbers of cycles under high-temperature, high-CO2 concentration conditions. In this work the feasibility of their reactivation by steam or water and remaking (reshaping) was investigated. The pellets, prepared from three limestones, Cadomin and Havelock (Canada) and Katowice (Poland, Upper Silesia), were tested in a thermogravimetric analyzer (TGA). The cycles were performed under realistic CO2 capture conditions, which included calcination in 100% CO2 at temperatures up to 950 °C. Typically, after 30 cycles, samples were hydrated for 5 min with saturated steam at 100 °C in a laboratory steam reactor (SR). Moreover, larger amounts of pellets were cycled in a tube furnace (TF), hydrated with water and reshaped, and tested to determine their CO2 capture activity in the TGA. It was found that, after the hydration stage, pellets recovered their activity, and more interestingly, pellets that had experienced a longer series of cycles responded more favorably to reactivation. Moreover, it was found that conversion of pellets increased after about 70 cycles (23%), reaching 33% by about cycle 210, with no reactivation step. Scanning electron microscope (SEM) analyses showed that the morphology of the low-porosity shell formed at the pellet surface during cycles, which limits conversion, was eliminated after a short period (5 min) of steam hydration. The nitrogen physisorption analyses (BET, BJH) of reshaped spent pellets from cycles in the TF confirmed that sorbent surface area and pore size distribution were similar to those of the original pellets. The main alumina compound in remade pellets as determined by XRD was mayenite (Ca12Al14O33). These results showed that, with periodic hydration/remaking steps, pellets can be used for extended times in CO2 looping cycles, regardless of capture/regeneration conditions.  相似文献   

15.
The O2/CO2 coal combustion technology is an innovative combustion technology that can control CO2, SO2 and NOx emissions simultaneously. Calcination and sintering characteristics of limestone under O2/CO2 atmosphere were investigated in this paper. The pore size, the specific pore volume and the specific surface area of CaO calcined were measured by N2 adsorption method. The grain size of CaO calcined was determined by XRD analysis. The specific pore volume and the specific surface area of CaO calcined in O2/CO2 atmosphere are less than that of CaO calcined in air at the same temperature. And the pore diameter of CaO calcined in O2/CO2 atmosphere is larger than that in air. The specific pore volume and the specific surface area of CaO calcined in O2/CO2 atmosphere increase initially with temperature, and then decline as temperature exceeds 1000 °C. The peaks of the specific pore volume and the specific surface area appear at 1000 °C. The specific surface area decreases with increase in the grain size of CaO calcined. The correlations of the grain size with the specific surface area and the specific pore volume can be expressed as L = 744.67 + 464.64 lg(1 / S) and L = − 608.5 + 1342.42 lg(1 / ε), respectively. Sintering has influence on the pore structure of CaO calcined by means of influencing the grain size of CaO.  相似文献   

16.
This study examines the loss of sorbent activity caused by sintering under realistic CO2 capture cycle conditions. The samples tested here included two limestones: Havelock limestone from Canada (New Brunswick) and a Polish (Upper Silesia) limestone (Katowice). Samples were prepared both in a thermogravimetric analyzer (TGA) and a tube furnace (TF). Two calcination conditions were employed: in N2 at lower temperature; and in CO2 at high temperature. The samples obtained were observed with a scanning electron microscope (SEM) and surface compositions of the resulting materials were analyzed by the energy dispersive X-ray (EDX) method. The quantitative influence of calcination conditions was examined by nitrogen adsorption/desorption tests, gas displacement pycnometry and powder displacement pycnometry; BET surface areas, BJH pore volume distributions, skeletal densities and envelope densities were determined. The SEM images showed noticeably larger CaO sub-grains were produced by calcination in CO2 during numerous cycles than those seen with calcination in nitrogen. The EDX elemental analyses showed a strong influence of impurities on local melting at the sorbent particle surface, which became more pronounced at higher temperature. Results of BET/BJH testing clearly support these findings on the effect of calcination/cycling conditions on sorbent morphology. Envelope density measurements showed that particles displayed densification upon cycling and that particles calcined under CO2 showed greater densification than those calcined under N2. Interestingly, the Katowice limestone calcined/cycled at higher temperature in CO2 showed an increase of activity for cycles involving calcination under N2 in the TGA. These results clearly demonstrate that, in future development of CaO-based CO2 looping cycle technology, more attention should be paid to loss of sorbent activity caused by realistic calcination conditions and the presence of impurities originating from fuel ash and/or limestone.  相似文献   

17.
There is increasing interest in CO2 looping cycles that involve the repeated calcination and carbonation of the sorbent as a way to capture CO2 from flue gases during the carbonation step and the generation of a pure stream of CO2 in the oxyfired calcination step. In particular, attrition of the material in these interconnected fluidized bed reactors is a problem of general concern. Attrition of limestone derived materials has been studied in fluidized bed systems by numerous authors. In this work, we have investigated the attrition of two limestones used in a system of two interconnected circulating fluidized bed reactors operating in continuous mode as carbonation and calciner reactors. We observed a rapid initial attrition of both limestones during the calcination step which was then followed by a highly stable period (up to 140 h of added circulation for one of the limestones) during which particle size changes were negligible. This is consistent with previous observations of attrition in other systems that employ these materials. However, a comparison of the attrition model constants with the data reported in the literature showed the two limestones to be particularly fragile during the initial calcination and the first few hours of circulation. Thus, a careful choice of limestone based on its attrition properties must be taken into account in designing future carbonate looping systems.  相似文献   

18.
Sulphur capture by calcium-based sorbents is a process highly dependent on the temperature and CO2 concentration. In oxy-fuel combustion in fluidised beds (FB), CO2 concentration in the flue gas may be enriched up to 95%. Under so high CO2 concentration, different from that in conventional coal combustion with air, the calcination and sulphation behaviour of the sorbent must be defined to determine the optimum operating temperature in the FB combustors.In this work, the SO2 retention capacity of two different limestones was tested by thermogravimetric analysis at typical oxy-fuel conditions in FB combustors. The effect of the main operating variables affecting calcination and sulphation reactions, like CO2 and SO2 concentrations, temperature, and sorbent particle size, was analysed.It was observed a clear difference in the sulphation conversion reached by the sorbent whether the sulphation takes place under indirect or direct sulphation, being much higher under indirect sulphation. But, in spite of this difference, for a given condition and temperature, the CO2 concentration did not affect to the sulphation conversion, being its major effect to delay the CaCO3 decomposition to a higher temperature.For the typical operating conditions and sorbent particle sizes used in oxy-fuel FB combustors, the maximum sorbent sulphation conversions were reached at temperatures of about 900 °C. At these conditions, limestone sulphation took place in two steps. The first one was controlled by diffusion through porous system of the particles until pore plugging, and the second controlled by the diffusion through product layer. As a consequence, the maximum sulphation conversion increased with decreasing the particle size and increasing the SO2 concentration.  相似文献   

19.
In this study, the decomposition conditions of limestone particles (0.25-0.50 mm) for CO2 capture in a steam dilution atmosphere (20-100% steam in CO2) were investigated by using a continuously operating fluidized bed reactor. The results show that the decomposition conversion of limestone increased with the steam dilution percentage in the CO2 supply gas. At a bed temperature of 920 °C, the conversions were 72% without steam dilution and 98% with 60% steam dilution. The conversion was 99% with 100% steam dilution at 850 °C of the bed temperature. Steam dilution can decrease not only the decomposition temperature of limestone, but also the residence time required for nearly complete decomposition of CaCO3. The hydration and carbonation reactivities of the CaO produced were also tested and the results show that both the reactivities increased with the steam dilution percentage for decomposing limestone.  相似文献   

20.
The calcination process may influence subsequent fragmentation, sintering and swelling when CaO derived from limestone acts as a CO2 or SO2-sorbent in combustion, gasification and reforming. Sorbent properties are affected by CO2 partial pressure, total pressure, temperature, heating rate, impurities and sample size. In this study, the effect of calcination heating rate was investigated based on an electrically heated platinum foil. The effects of heating rate (up to 800 °C/s), calcination temperature (700-950 °C), particle size (90-180 μm) and sweep gas velocity were investigated. Higher initial heating rates led to lower extents of limestone calcination, but the extents of carbonation of the resulting CaO were similar to each other. Calcium utilization declined markedly during carbonation or sulphation of CaO after calcination by rapid heating. Experimental results show that carbonation and calcium utilization were most effective for carbonation temperatures between 503 and 607 °C. Increasing the extent of calcination is not the best way to improve overall calcium utilization due to the vast increase in energy consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号