首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ettringite-accelerated binders composed of CAC–PC–C$ (calcium aluminate cement–Portland cement–calcium sulfate) and CSA–PC–C$ (calcium sulfoaluminate cement–Portland cement–calcium sulfate) have been used widely for indoor applications, such as self-leveling floor screeds, underlayment, and tile adhesives owing to their rapid setting, early strength gain, and shrinkage compensation properties. These properties also make these binders appealing candidates for outdoor rapid repair (e.g., highways, bridge decks, and airfield pavements). However, a central question remains: Does ettringite remain stable in outdoor exposure conditions? If so, which factors will contribute positively/negatively to the long-term stability of ettringite in these systems? To address these questions, this critical review presents the current state of knowledge regarding the hydration of ternary binders composed of CAC–PC–C$ and CSA–PC–C$ with respect to ettringite formation and the factors affecting the stability of ettringite thereafter. The purpose of this review paper is to synthesize and analyze current research regarding conditions that promote or deter ettringite stability, establish what information is missing, unclear, or contradictory, and identify remaining research needs to address the identified knowledge gaps.  相似文献   

2.
Calcium aluminate cement (CAC) pastes containing Egyptian air-cooled slag (AS) or water-cooled slag (WS) were prepared using different amounts of slag, namely, 5, 10, 15, 20 and 25 mass%. The pastes were prepared with deionized water using the required water of standard consistency to produce normal workability. The variations of electrical conductivity with the hydration time were measured at 20, 40 and 60 °C. The results demonstrate that electrical conductivity is a useful technique to study the change in the phase composition at different temperatures during the setting and hardening of calcium aluminate cement as well as reflecting the role of AS and WS, preventing the conversion occurring during the CAC hydration.  相似文献   

3.
As the hydration of calcium aluminate cements (CAC) is highly temperature dependent, yielding morphologically and structurally different hydration products that continuously alter material properties, a good knowledge of thermal properties at early stages of hydration is essential. Thermal diffusivity and thermal conductivity during CAC hydration was investigated by a transient method with a numerical approach and a transient hot wire method, respectively. For hydration at 15 °C (formation of mainly CAH10), thermal diffusivity shows a linear decrease as a function of hydration degree, while for hydration at 30 °C there is a linear increase of thermal diffusivity. Converted materials exhibited the highest values of thermal diffusivities. The results on sealed converted material indicated that thermal conductivity increased with an increase in temperature (20-80 °C), while thermal diffusivities marginally decreased with temperature. The Hashin-Shtrikman boundary conditions and a simple law of mixtures were successfully applied for estimating thermal conductivity and heat capacity, respectively, of fresh cement pastes.  相似文献   

4.
研究了配合比与养护温度对水泥窑灰(cement kiln dust,CKD)—粉煤灰(fly ash,FA)净浆的水化与强度发展的影响。净浆采用5种不同的水泥窑灰与粉煤灰比例配制,部分试件添加硅酸盐水泥作添加剂。试件在24、38℃及50℃的条件下进行养护。采用热重分析与X射线衍射测试试件的水化产物。结果表明在50℃的养护条件下,75%CKD+25%FA与45%CKD+45%FA+10%OPC试件的28 d与56 d强度分别达到了100%OPC水泥净浆强度的70%与80%以上。CKD-FA体系中的主要结晶水化产物是钙矾石。无论CKD与FA比例多大,CKD-FA浆体中钙矾石的含量显著高于水泥净浆。CKD-FA体系中钙矾石在90d的龄期仍可保持稳定。  相似文献   

5.
The compressive strength and the volume porosity of calcium aluminate cement pastes have been studied in order to connect their relationship. The influence of mass fraction of lithium carbonate on compressive strength and porosity of calcium aluminate cement (CAC) has been investigated at different water-cement (w/c) ratios. The functions proposed in the literature for different technical materials were tested on obtained strength and porosity data. Those functions have been a base for further development of more general functional dependence of strength and porosity for cement materials. Thus, we propose the following equation to relate the strength and porosity for CAC pastes:
  相似文献   

6.
The present study deals with the formulation of new cementitious materials via the alkaline activation of an industrial by-product (blast furnace slag) or a natural rock (diatomite) in the presence of reactive aluminium sourced from calcium aluminate cement (CAC). Two blends, one containing 20% CAC and 80% slag and the other 20% CAC and 80% diatomite, were prepared and activated with sodium sulphate or a sodium hydroxide solution. The hardened materials were characterised with X-ray diffraction (XRD) as well as 27Al and 29Si nuclear magnetic resonance (NMR) and tested for their 2-day mechanical strength. The main reaction product was a cementitious gel that precipitated with crystalline phases such as ettringite, U phase and katoite. While the slag blend reacted to generate a C–(A)–S–H-like gel under moderately alkaline conditions, diatomite reactivity proved to be very low under such conditions. The greater reactivity of both slag and diatomite at high pH (high alkalinity) favoured their interaction with CAC.  相似文献   

7.
《应用陶瓷进展》2013,112(7):384-390
Pure β-dicalcium silicate and monocalcium aluminate powder were prepared by Pechini method. A series of calcium silicate/calcium aluminate cements (CSC/CAC) were prepared. The setting time, crystalline phases, microstructures, compressive strength, cells attachment and silicon release of the cements were investigated. The results indicate that the setting time of CSC/CAC was shorter than that of either CSC or CAC. The hydration products in CSC/CAC composite are gehlenite (Ca2Al2SiO7·8H2O), calcium aluminate hydrate (Ca3Al2O6?×?H2O), and katoite (Ca2Al2O6·6H2O). Platelike crystals were found in the microstructure. The liquid to powder ratio has a significant effect on the porosity and the strength of CSC/CAC. The MC3T3 cells attached well to the surfaces of CSC/CAC. However, the cells proliferation on the surface of 7S3A was better than that of 3S7A due to its higher silicon release. In general, CSC/CAC exhibits good biocompatibility and relative high strength, and may be suitable for some non-load bearing bone restorative applications.  相似文献   

8.
This paper reports the formation and microstructure development of ettringite during hydration of two rapid hardening cements under various handling times. The rapid hardening component of one of these cements is crystalline calcium fluoroaluminate while that of the other is an amorphous calcium aluminate. During hydration, the crystalline fluoroaluminate component forms ettringite from the very beginning. The amount of ettringite increases with time producing needle-shaped crystal of various sizes. The amorphous calcium aluminate component, on the other hand, exhibits an initial induction period after which there is a rapid formation of needle-shaped ettringite crystals of nearly uniform size.  相似文献   

9.
Calcium hexaluminate (CA6) is an intrinsically densification-resistant material, therefore, its porous structures are key materials for applications as high-temperature thermal insulators. This article reports on the combination of calcined alumina and calcium aluminate cement (CAC) in castable aqueous suspensions for the in situ production of porous CA6. The CAC content (10–34 vol%) and the curing conditions ensure structural integrity prior to sintering and maximize the development of hydrated phases. Changes in physical properties, crystalline phases, and microstructure were investigated after isothermal treatments (120–1500 °C), and three sequential porogenic events were observed. The hydration of CAC preserved the water-derived pores (up to 120 °C), and the dehydroxylation of CAC hydrates (250–700 °C) generated inter-particles pores. Moreover, the in situ expansive formation of CA2 and CA6 (900–1500 °C) hindered densification and generated intra-particle pores. Such events differed from those observed with other CaO sources, and resulted in significantly higher pores content and lower thermal conductivity.  相似文献   

10.
The aim of the present work is to study the effect of calcium formate (CF) as an accelerator on the properties of pozzolanic cement pastes. Three types of cements were used in this investigation. These cements were OPC and pozzolanic cements containing 80 mass% OPC and 20 mass% silica fume (SF) or 20 mass% ground clay bricks (GCB). The dosages of CF were 0.00, 0.25, 0.50, and 0.75 mass% of cement. The compressive strength, total porosity, and hydration kinetics such as free lime and combined water contents were investigated. The results obtained in this study showed that the addition of CF shortens the initial and final setting times and increases the compressive strength and combined water content as well as gel/space ratio at all ages of hydration. On the other hand, it decreases the total porosity. CF activates the liberation of Ca(OH)2 of OPC pastes. The free lime content of pozzolanic cement in the presence of CF increases up to 7 days, then decreases at the later ages of hydration.  相似文献   

11.
The influence of water loss during the hydration of calcium aluminates on the phase development is investigated at 60°C. This is relevant for applications in which calcium aluminate cement (CAC) based formulations are exposed to quick drying during hydration. The presented results provide new insights into the well-known conversion processes occurring in CAC pastes. Using in situ XRD two different routes of the development of initially formed C2AH8 are determined: (a) transformation to C3AH6 + AH3 in the presence of sufficient free water and (b) dehydration to C2AH5 at a lack of free water. Moreover, the influence of precuring of the pastes at 23°C before heating to 60°C is investigated. The increasing loss of free water with increasing precuring time resulting from both, precipitation of hydrate phases and evaporation, causes incomplete hydration of CA or CA2 as well as dehydration of C2AH8 instead of conversion into C3AH6. Comparative investigations of sealed samples always revealed complete hydration of CA and CA2 as well as complete conversion of C2AH8.  相似文献   

12.
Hydrated Calcium Aluminate Cement (CAC) is known to have a complex microstructure involving different phase assemblages strongly dependant on the temperature. This work presents an experimental approach to study the microstructure of CAC pastes from the first minute of hydration with controlled time-temperature histories up to several months of curing. The self heating usually occurring in the CAC concrete is considered and its influence on the growth and assemblage of the hydration products and subsequent space filling is shown. Quantification of the degree of CA hydration by BSE image analysis is used to understand the evolution of phases throughout the hydration process. Lithium sulphate is commonly used to control the setting time of CAC based materials. It is shown that this promotes the formation of more stable hydrates, but slightly reduces the extent of CA hydration.  相似文献   

13.
Sodium polyphosphate-modified Class F fly ash/calcium aluminate blend (SFCB) cements were prepared at room temperature and their resistance to hot acid erosion was evaluated by submerging them in H2SO4 solution (pH 1.6) at 90°C. Sodium polyphosphate preferentially reacted with calcium aluminate cement (CAC) to form amorphous Ca(HPO4).xH2O and Al2O3.xH2O gel, rather than fly ash. These amorphous reaction products, which bound the partially reacted and unreacted CAC and fly ash particles into a coherent mass, were responsible for strengthening and densifying the SFCB specimens at room temperature, playing an essential role in mitigating their acid erosion. In these cements, the extent of acid erosion depended primarily on the ratio of fly ash/CAC; namely, those with a higher ratio underwent a severe erosion. This effect was due to the formation of a porous structure, which allowed acid to permeate the cement easily, diminishing the protective activity of Ca(HPO4).xH2O and Al2O3.xH2O gel against H2SO4.  相似文献   

14.
Accelerated carbonation of Friedel's salt in calcium aluminate cement paste   总被引:2,自引:0,他引:2  
The stability of Friedel's salt with respect to carbonation has been studied in calcium aluminate cement (CAC) pastes containing NaCl (3% of Cl by weight of cement). Carbonation was carried out on a powdered sample in flowing 5% CO2 gas at 65% relative humidity to accelerate the process. At an intermediate carbonation step, a part of the sample was washed and dried up to 10 cycles to simulate a dynamic leaching attack. The two processes were followed by means of X-ray diffraction (XRD), pH and Cl analyses in the simulated pore solution.  相似文献   

15.
《Ceramics International》2019,45(11):14121-14125
Calcium aluminate cement (CAC) was ground for 1 and 2 h to investigate the impact of mechanical grinding on CAC hydration at 30 °C and CAC-bonded castable strength. Phase composition and microstructure of unground and ground cements after hydration for predetermined times and terminated by the freeze-vacuum drying were compared. The results indicate that the particle size and particle size distribution of CAC were reduced and narrowed, respectively by grinding, thereby favoring the hydration rate and the conversation of C2AH8 to C3AH6. Then enhanced cement hydration also increases the strengths of castables bonded with milled CAC after drying and firing.  相似文献   

16.
Calcium sulfoaluminate cements (CSA) are a promising low-CO2 alternative to ordinary Portland cements and are as well of interest concerning their use as binder for waste encapsulation. In this study, the hydration of two CSA cements has been investigated experimentally and by thermodynamic modelling between 1 h and 28 days at w/c ratios of 0.72 and 0.80, respectively.The main hydration product of CSA is ettringite, which precipitates together with amorphous Al(OH)3 until the calcium sulfate is consumed after around 1-2 days of hydration. Afterwards, monosulfate is formed. In the presence of belite, strätlingite occurs as an additional hydration product. The pore solution analysis reveals that strätlingite can bind a part of the potassium ions, which are released by the clinker minerals. The microstructure of both cements is quite dense even after 16 h of hydration, with not much pore space available at a sample age of 28 days.The pore solution of both cements is dominated during the first hours of hydration by potassium, sodium, calcium, aluminium and sulfate; the pH is around 10-11. When the calcium sulfate is depleted, the sulfate concentration drops by a factor of 10. This increases pH to around 12.5-12.8.Based on the experimental data, a thermodynamic hydration model for CSA cements based on cement composition, hydration kinetics of clinker phases and calculations of thermodynamic equilibria by geochemical speciation has been established. The modelled phase development with ongoing hydration agrees well with the experimental findings.  相似文献   

17.
Calcium sulfoaluminate and Portland cement pastes, both prepared with a water/solid mass ratio equal to 0.5 and cured for time periods comprised between 2 h and 28 days, show completely different pore size distributions by mercury intrusion. Portland cement pastes aged at 12 h and 1 day exhibit a unimodal distribution of pore sizes related to a continuous network of capillary pores with a threshold pore radius decreasing from nearly 650 to 350 nm. After 7 and 28 days of curing, this parameter shifts to about 150 nm and a region having smaller pores appears (with a second threshold pore radius roughly comprised between 10 and 30 nm), made discontinuous by blockages of hydration products which occlude the interconnected pore system and isolate the interior space. For calcium sulfoaluminate cement pastes, a bimodal distribution is rapidly established, in which the regions with a lower porosity (threshold pore radii up to about 25 nm) are dominant, while the decrease of total porosity almost ceases at later ages. The porosimetric behaviour of calcium sulfoaluminate-based cement is related to its very fast hydration rate and to the lack of water needed to continue the hydration reactions.  相似文献   

18.
《Ceramics International》2023,49(18):30326-30334
In heavy oil recovery, calcium aluminate cement (CAC) is in the working environment of “low-temperature hardening and ultrahigh temperature service.” However, the formation of C3AH6 under low temperatures results in a decrease in strength and reduce the cementing quality. In this study, titanium extraction slag (TES) was used to inhibit CAC strength deterioration. TES, characterized by a high Ti content, presents challenges in terms of utilization and poses significant ecological risks owing to its large accumulation. Cementite hydration with 0%, 20%, 30%, and 40% TES relative to CAC was examined at 30 °C for 28 d. The high C3AH6 content of the pure CAC increased the strength deterioration, pore size, and cementite carbonation. With 20% TES, a dilution effect was observed without strength improvement. Furthermore, 30% TES generated layered double hydroxides and converted C–S–H into C–A–S–H, thereby increasing compressive strength. By-products were generated with 40% TES, which inhibited the strength development while generating C–A–S–H to maintain the compressive strength. Therefore, TES can inhibit the strength decline of CAC, and the byproducts of the LDH structure can improve corrosion resistance.  相似文献   

19.
The phase formation, heat of hydration and dilatation in a blended cement consisting of 50 wt.% calcium aluminate cement, 25 wt.% Portland cement and 25 wt.% calcium sulfate were studied (w/c=1). The calcium sulfate was β-hemihydrate, anhydrite and mixes of the two. Kinetic expressions describing the ettringite formation in the pastes with the pure calcium sulfates were found. Hydration reactions were suggested and the phase development was compared to the hydration heat by mass and heat balances. When the calcium sulfate was 75 and 50 wt.% β-hemihydrate, the systems behaved as a linear combination of the 100 and 0 wt.% blends. At 25 wt.%, the hydration kinetics differed from the other blends. With only β-hemihydrate, the last 50% of ettringite formation was accompanied by expansion, mainly caused by interaction of crystals growing radially on cement grains. In the paste with only anhydrite, ettringite crystals grew in solution and produced no expansion.  相似文献   

20.
The influence of a relatively new high-performance cement replacement material—vitreous calcium aluminosilicate (VCAS)—on the hydration behavior in cementitious systems, and its comparison to silica fume (SF) are presented in this paper. VCAS is shown to have no cementitious qualities, but exhibits significant pozzolanicity, which has been quantified using strength activity index and electrical conductivity change. VCAS modified pastes are found to consume more water during hydration than the corresponding SF modified pastes. Based on a normalized calcium hydroxide content defined in this paper, it is seen that the pozzolanic reaction of VCAS does not happen until 7 days while that of SF occurs as early as the first day. The degrees of hydration of the modified pastes are predicted using a model that employs the change in non-evaporable water resulting from the use of these replacement materials. VCAS modified pastes show lower later age porosities as compared to the plain and SF modified pastes. However, at equal degrees of hydration, SF modified pastes show the lowest porosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号