首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toughening of recycled poly(ethylene terephthalate) (PET) was carried out by blending with a maleic anhydride grafted styrene‐ethylene/butylene‐styrene triblock copolymer (SEBS‐g‐MA). With 30 wt % of the SEBS‐g‐MA, the notched Izod impact strength of the recycled PET was improved by more than 10‐fold. SEM micrographs indicated that cavitation occurred in just a small area near the notch root. Addition of 0.2 phr of a tetrafunctional epoxy monomer increased the recycled PET melt viscosity by chain extension reaction. Different from the positive effect of the epoxy monomer in toughening of nylon and PBT with elastomers, the use of the epoxy monomer in the recycled PET/SEBS‐g‐MA blends failed to further enhance dispersion quality and thus notched impact strength. This negative effect of the epoxy monomer was attributed to the faster reactivity of the epoxy group with maleic anhydride of the SEBS‐g‐MA than with the carboxyl or hydroxyl group of recycled PET. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1462–1472, 2004  相似文献   

2.
Ethylene–vinyl alcohol copolymer (EVOH)/organoclay nanocomposites were prepared via a dynamic melt‐intercalation process. The effect of compatibilizers on the melt blending torque, intercalation level, and morphology of EVOH/organoclay systems was investigated. Maleic anhydride grafted ethylene vinyl acetate (EVA‐g‐ MA), or maleic anhydride grafted linear low‐density polyethylene (LLDPE‐g‐MA), were used to compatibilize EVOH with clay, at various concentrations (1, 5, and 10 wt %). Computer‐simulation techniques are used to predict structural properties and interactions of EVOH with compatibilizers in the presence and absence of clay. The simulation results strongly support the experimental findings and their interpretation. X‐ray diffraction shows enhanced intercalation within the galleries when the compatibilizers were added. Interestingly, results were obtained for the EVOH/clay/compatibilizer systems, owing to a high level of interaction developed in these systems. Thermal analysis shows that, upon increasing the compatibilizer content, lower crystallinity levels result, until at a certain compatibilizer content no crystallization is taking place. Significantly higher mixing viscosity levels were obtained for the EVOH/organoclay blends compared with the neat EVOH polymer. The storage modulus was higher compared with the uncompatibilized EVOH/organoclay blend in the presence of EVA‐g‐MA compatibilizer (at all concentrations), and only at low contents of LLDPE‐g‐MA. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2060–2066, 2005  相似文献   

3.
Blending polypropylene (PP) with biodegradable poly(3‐hydroxybutyrate) (PHB) can be a nice alternative to minimize the disposal problem of PP and the intrinsic brittleness that restricts PHB applications. However, to achieve acceptable engineering properties, the blend needs to be compatibilized because of the immiscibility between PP and PHB. In this work, PP/PHB blends were prepared with different types of copolymers as possible compatibilizers: poly(propylene‐g‐maleic anhydride) (PP–MAH), poly (ethylene‐co‐methyl acrylate) [P(E–MA)], poly(ethylene‐co‐glycidyl methacrylate) [P(E–GMA)], and poly(ethylene‐co‐methyl acrylate‐co‐glycidyl methacrylate) [P(E–MA–GMA)]. The effect of each copolymer on the morphology and mechanical properties of the blends was investigated. The results show that the compatibilizers efficiency decreased in this order: P(E–MA–GMA) > P(E–MA) > P(E–GMA) > PP–MAH; we explained this by taking into consideration the affinity degree of the compatibilizers with the PP matrix, the compatibilizers properties, and their ability to provide physical and/or reactive compatibilization with PHB. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
The influence of two different compatibilizers and their combination (maleic anhydride grafted high density polyethylene, HDPE‐g‐MA; maleic anhydride grafted linear low density polyethylene, LLDPE‐g‐MA; and 50/50 wt % mixture of these compatibilizers) on the rheological, thermomechanical, and morphological properties of HDPE/LLDPE/organoclay blend‐based nanocomposites was evaluated. Nanocomposites were obtained by melt‐intercalation in a torque rheometer in two steps. Masterbatches (compatibilizer/nanoclay 2:1) were obtained and subsequently diluted in the HDPE/LLDPE matrix producing nanocomposites with 2.5 wt % of nanoclay. Wide angle X‐ray diffraction (WAXD), steady‐state rheological properties, and transmission electron microscopy (TEM) were used to determine the influence of different compatibilizer systems on intercalation and/or exfoliation process which occurs preferentially in the amorphous phase, and thermomechanical properties. The LLDPE‐g‐MA with a high melt index (and consequently low viscosity and crystallinity) was an effective compatibilizer for this system. Furthermore, the compatibilized nanocomposites with LLDPE‐g‐MA or mixture of HDPE‐g‐MA and LLDPE‐g‐MA exhibited better nanoclay's dispersion and distribution with stronger interactions between the matrix and the nanoclay. These results indicated that the addition of maleic anhydride grafted polyethylene facilitates both, the exfoliation and/or intercalation of the clays and its adhesion to HDPE/LLDPE blend. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1726–1735, 2013  相似文献   

5.
In this study, poly(acrylonitrile–butadiene–styrene)/polypropylene (ABS/PP) blends with various compositions were prepared by melt intercalation in a twin‐screw extruder. Modifications of the above blends were performed by using organically modified montmorillonite (OMMT, Cloisite 30B) reinforcement as well as two types of compatibilizers, namely polypropylene grafted with maleic anhydride (PP‐g‐MAH) and ABS grafted with maleic anhydride (ABS‐g‐MAH). Increasing the PP content in ABS matrix seems to increase the melt flow and thermal stability of their blends, whereas a deterioration of the tensile properties was recorded. On the other hand, the addition of ABS to PP promotes the formation of the β‐crystalline phase, which became maximum at 30 wt% ABS concentration, and increases the crystallization temperature (Tc) of PP. A tendency for increase of Tc was also recorded by incorporation of the above compatibilizers, whereas the glass transition temperature (Tg) of PP and SAN phase in ABS was reduced. Regarding the Young's modulus, the greatest improvement was observed in pure ABS/PP blends containing organically modified nanoclay. However, in reinforced pure PP, the use of compatibilizers is recommended in order to improve the elastic modulus. The addition of OMMT to noncompatibilized and compatibilized ABS/PP blends significantly improves their storage modulus. POLYM. ENG. SCI., 56:458–468, 2016. © 2016 Society of Plastics Engineers  相似文献   

6.
Reactive blending is an innovative method for the improvement of compatibility of polymer blend. In this work, poly ( L-lactic acid) and poly (butylene succinate) (PLLA/PBS) blends were prepared by melt blending to ameliorate the toughness of PLLA. Triphenyl phosphite (TPP) was introduced into the PLLA/PBS blends (80/20 by weight) to enhance their compatibility via reactive blending. The effects of TPP on the morphology and properties of PLLA/PBS blends were studied systematically. The increased torque during melt blending demonstrated that the compatibilizer successfully reacted with PLLA and PBS. The mechanical properties of the blends were exceedingly improved only with 0.5 wt% TPP. A reduction tendency of size of the dispersed phase was observed due to the improvement of compatibility. The DSC and DMA results indicate that the T g of PLLA decreased at a slow rate with the increasing content of TPP. This work provided a simple approach for preparing a kind of high toughed PLLA material. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48646.  相似文献   

7.
In this study, dual compatibilizers composed of the commercially available maleic anhydride‐grafted polypropylene (PP–MA) and a multifunctional epoxy resin were demonstrated to effectively compatibilize the immiscible and incompatible blends of PP and poly(butylene terephthalate) (PBT). The PP–MA with a low MA content is totally miscible with PP to make the PP phase quasi‐functionalized, so that the multifunctional epoxy has the chance to react with PBT and PP–MA simultaneously to form PP–MA‐co‐epoxy‐co‐PBT copolymers at the interface. These desired copolymers are able to anchor along the interface and serve as efficient compatibilizers. The compatibilized blends, depending on the quantity of dual compatibilizers employed, exhibit higher viscosity, finer phase domain, and improved mechanical properties. Epoxy does not show compatibilization effects for the PP/PBT blends without the presence of PP–MA in the blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2272–2285, 2001  相似文献   

8.
With the increasing ratio of waste tire powder (WTP) to low‐density polyethylene (LDPE), the hardness and tensile strength of the WTP/LDPE blends decreased while the elongation at break increased. Five kinds of compatibilizers, such as maleic anhydride‐grafted polyethylene (PE‐g‐MA), maleic anhydride‐grafted ethylene‐octene copolymer (POE‐g‐MA), maleic anhydride‐grafted linear LDPE, maleic anhydride‐grafted ethylene vinyl‐acetate copolymer, and maleic anhydride‐grafted styrene‐ethylene‐butylene‐styrene, were incorporated to prepare WTP/LDPE blends, respectively. PE‐g‐MA and POE‐g‐MA reinforced the tensile stress and toughness of the blends. The toughness value of POE‐g‐MA incorporating blends was the highest, reached to 2032.3 MJ/m3, while that of the control was only 1402.9 MJ/m3. Therefore, POE‐g‐MA was selected as asphalt modifier. The toughness value reached to the highest level when the content of POE‐g‐MA was about 8%. Besides that the softening point of the modified asphalt would be higher than 60°C, whereas the content of WTP/LDPE blend was more than 5%, and the blends were mixed by stirring under the shearing speed of 3000 rpm for 20 min. Especially, when the blend content was 8.5%, the softening point arrived at 82°C, contributing to asphalt strength and elastic properties in a wide range of temperature. In addition, the swelling property of POE‐g‐MA/WTP/LDPE blend was better than that of the other compalibitizers, which indicated that POE‐g‐MA /WTP/LDPE blend was much compatible with asphalt. Also, the excellent compatibility would result in the good mechanical and processing properties of the modified asphalt. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
In this work, the compatibilization of a poly(?‐caprolactone) with a number‐average molecular weight of 120,000 g/mol (PCL120) and maize starch was investigated by the addition of a chemically modified poly(?‐caprolactone). Two types of blends were prepared by melt extrusion. In type A blends, low‐molecular‐weight compatibilizers were used: (1) a poly(?‐caprolactone) with a number‐average molecular weight of 10,000 g/mol that was reacted with maleic anhydride to obtain chains terminating in carboxylic groups and (2) low‐molecular‐weight poly(?‐caprolactone)s (number‐average molecular weights of 600 and 2000 g/mol) with one pendant carboxylic group within the chains. With these groups of blends, tensile testing and scanning electron microscopy demonstrated that the compatibilizers were generally effective in inducing a better dispersion for a 60/40 poly(?‐caprolactone)/maize starch blend with a compatibilizer, improving the mechanical properties in comparison with uncompatibilized blends. The blends with 30% starch were not improved by the addition of compatibilizer, and this may be related to the rheology of the blends during preparation. In type B blends, high‐molecular‐weight compatibilizers were prepared through the grafting of variable amounts of acrylic acid or maleic anhydride to PCL120 chains. The best compatibilizer action was obtained with 0.7 wt % maleic anhydride grafted to PCL120 because both the dispersion and mechanical properties were further improved in comparison with uncompatibilized blends and type A blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
The effect of compatibilizers on the blending torque, crystallization behavior, intercalation level, thermal stability and morphology of EVOH/treated clay systems was investigated. Maleic anhydride‐grafted ethylene vinyl acetate (EVA‐g‐MA) or maleic anhydride‐grafted linear low density polyethylene (LLDPE‐g‐MA) were used as compatibilizers of EVOH with clay, in various concentrations (1, 5 and 10 wt%). The blends were processed using Brabender Plastograph and characterized by XRD, SEM, DSC, DMTA and TGA. X‐ray diffraction shows advanced intercalation within the galleries when the compatibilizers were added. Unique results were obtained for the EVOH/clay/compatibilizer systems, owing to a high level of interaction developed in these systems, which plays a major role. Thermal analysis showed that with increasing compatibilizer content, lower crystallinity levels result, until at a certain content no crystallization has taken place. Significantly higher viscosity levels were obtained for the EVOH/clay blends compared to the neat polymer, as seen by a dramatic torque increase when processed in the Brabender machine. The DMTA spectra showed lower Tg values for the compatibilized nanocomposites compared to the neat EVOH and the uncompatibilized composites. Storage modulus was higher compared to the uncompatibilized EVOH/clay blend when EVA‐g‐MA compatibilizer was added (at all concentrations), and only at low contents of LLDPE‐g‐MA. TGA results show significant improvement of the blends thermal stability compared to the neat EVOH, and to the uncompatibilized blend, indicating an advanced intercalation.  相似文献   

11.
The pristine sodium montmorillonite (MMT) was organically modified with hexadecyltrimethylammonium bromide (HTAB) at different contents. The organoclay was characterized by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy, energy dispersive X‐ray techniques, and thermogravimetric analysis. Then, poly(butylene succinate) (PBS) nanocomposites were prepared by melt‐mixing process using maleic anhydride‐grafted PBS (PBS‐g‐MA) as compatibilizer. It was found that the mechanical properties of PBS nanocomposites filled with organoclay were apparently higher than that of the nanocomposite filled with MMT. This is attributed to the better filler–matrix interactions between PBS and the organoclay and the better filler dispersion. This is verifiable through the XRD, scanning electron microscopy, and transmission electron microscopy. The addition of PBS‐g‐MA further improved the mechanical properties. It was also found that our laboratory synthesized organoclay modified with HTAB has provided a better reinforcing efficiency when compared with the commercial octadecylamine‐modified organoclay. Besides that the thermal properties of PBS nanocomposites were studied through differential scanning calorimetry. POLYM. ENG. SCI., 2013. © 2013 Society of Plastics Engineers  相似文献   

12.
Melt rheological properties of blends of polypropylene (PP) and PP grafted with maleic anhydride (PP‐g‐MA) are studied using a capillary rheometer. A pseudoplastic flow behavior is observed. The pseudoplasticity of the melt reduces with an increase of PP‐g‐MA content and/or temperature. The PP‐g‐MA component in the blend acts as decreasing melt viscosity, especially in the lower shear rate region, while the addition of PP‐g‐MA to PP does not cause obvious increase of die swell ratio. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1641–1648, 1999  相似文献   

13.
Blends of recycled polycarbonate (PC) and acrylonitrile–butadiene–styrene (ABS) were prepared and some mechanical and morphological properties were investigated. To compatibilize these blends, ABS‐g‐(maleic anhydride) (ABS‐g‐MA) and (ethylene–vinyl acetate)‐g‐(maleic anhydride) (EVA‐g‐MA) with similar degree of grafting of 1.5% were used. To compare the effect of the type of compatibilizer on mechanical properties, blends were prepared using 3, 5 and 10 phr of each compatibilizer. A co‐rotating twin‐screw extruder was used for blending. The results showed that ABS‐g‐MA had no significant effect on the tensile strength of the blends while EVA‐g‐MA decreased the tensile strength, the maximum decrease being about 9.6% when using 10 phr of this compatibilizer. The results of notched Charpy impact strength tests showed that EVA‐g‐MA increased the impact strength of blends more than ABS‐g‐MA. The maximum value of this increase occurred when using 5 phr of each compatibilizer, it being about 54% for ABS‐g‐MA and 165% for EVA‐g‐MA. Scanning electron microscopy micrographs showed that the particle size of the dispersed phase was decreased in the continuous phase of PC by using the compatibilizers. Moreover, a blend without compatibilizer showed brittle behaviour while the blends containing compatibilizer showed ductile behaviour in fracture. © 2013 Society of Chemical Industry  相似文献   

14.
Simple blends with different viscosity ratios of the components as well as compatibilized blends varying both in type and content of the compatibilizers were used to study the relation between the interfacial tension and the dispersed‐phase particle size for PP/PA6 (80/20 wt %) blends in this work. Four compatibilizing systems including poly(ethylene‐co‐methacrylic acid) ionomers, a maleic anhydride‐grafted propylene copolymer, maleic anhydride‐grafted polypropylene, and a maleic anhydride‐grafted styrene ethylene butylene copolymer were used. For blends prepared in an internal mixer, a power‐law relation was found between the capillary number and the torque ratio of the blends' components. This relation was used to estimate the interfacial tension for the compatibilized blends. The relation between the steady‐state torque of the blends as a measure of viscosity and the estimated values of interfacial tension were also investigated. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 54–63, 2003  相似文献   

15.
Cocontinuous blends of 45/55 polypropylene (PP)/acrylonitrile‐butadiene‐styrene (ABS) with multiwall carbon nanotubes (MWNT) were prepared by melt‐mixing in a conical twin‐screw microcompounder. PP‐grafted‐maleic anhydride (PP‐g‐MA) and styrene MA were used as compatibilizers for PP/ABS blends. Scanning electron microscopic observations showed phase segregation of PP‐g‐MA in the blends. State of dispersion of MWNT in the presence or absence of the compatibilizers was assessed through AC electrical conductivity measurements and crystallization studies of the blends. An improvement in AC electrical conductivity was observed in blends in presence of either styrene MA or dual compatibilizers. The lowest electrical percolation threshold was achieved at 0.1 wt % of MWNT using sodium salt of 6‐amino hexanoic acid‐modified MWNT. Significant increase in crystallization temperature of PP phase of blends with MWNT was observed in the presence of compatibilizers as compared to blends without compatibilizers. An attempt has been made to address the complex issues of phase segregation, compatibilization, and dispersion of MWNT in cocontinuous blends of PP/ABS. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
The blends of high‐density polyethylene (HDPE) and poly(l ‐lactic acid) (PLLA) were prepared by melt blending method in an extrusion mixer with a postextrusion blown film attachment. The ratios of HDPE/PLLA blends were taken as 100/0, 95/5, 90/10, 85/15, and 80/20. The 80/20 blend was further compatibilized by adding maleic anhydride‐grafted polyethylene in different ratios (up to 8 wt%). Based on the mechanical properties of the films, the compositions HDPE80 (80% HDPE and 20% PLLA) and HD80C4 (80% HDPE, 20% PLLA, and 4% compatibilizer) were found to be optimum and considered for further analysis. The thermal properties of these selected blends were investigated by means of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA study revealed that the addition of the PLLA somewhat decreased the thermal stability of HDPE. DSC investigation showed that the blends were partially miscible only. X‐ray diffraction (XRD) analysis enlightened that the crystallinity of blends was slightly increased with addition of PLLA. Immiscibility of the two polymers was diminished in the presence of compatibilizer, as indicated by the scanning electron microscopy (SEM) of the blends. These partially biodegradable blends may be used for flexible packaging applications. POLYM. ENG. SCI., 54:2155–2160, 2014. © 2013 Society of Plastics Engineers  相似文献   

17.
Utilization of low‐value agricultural waste for polymer composite materials has great environmental and economical benefits. Sunflower head residue (SHR) as an agricultural waste may be used as a reinforcement in polymeric materials because of its fiber characteristics. In this work, composites of biodegradable poly(butylene adipate‐co‐terephthalate) (PBAT) and SHR were prepared via melt‐extrusion compounding. To improve interfacial compatibility, maleic anhydride (MA) grafted PBAT (PBAT‐g‐MA) was prepared and used as a compatibilizer for the PBAT/SHR composites. The effects of the concentrations of SHR and PBAT‐g‐MA on the morphology, mechanical properties, melt rheology, and water resistance of the composites were examined. Interfacial adhesion between phases in the PBAT/SHR composites was enhanced by the introduction PBAT‐g‐MA as interface‐strengthening agent, resulting in improved mechanical properties and moisture resistance of the composite. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44644.  相似文献   

18.
A strategy to reduce the dependence on petroleum‐based building blocks and the disposal concerns of solid wastes was proposed by developing a novel polymer blend from bio‐based cellulose acetate butyrate (CAB) and poly(trimethylene terephthalate) (PTT). The thermodynamic immiscibility and the thermal behaviors of the polymer melt blends were investigated. The interfacial properties were analyzed to provide the theoretical guidance to improve the compatibility of blends. A reactive compatibilizer, poly(trimethylene terephthalate)‐graft‐(maleic anhydride) (PTT‐g‐MA) was prepared from melt reaction and characterized with FTIR. The compatibilizer was melt blended into the CAB and PTT blends. The effects of different compatibilizers on the phase morphologies and mechanical properties of blends were characterized and the interfacial interactions were studied. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
In this study, polyamide‐66/poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PA66/PPO) blends with high viscosity ratio were processed by a self‐designed triangle‐arrayed triple‐screw extruder (TTSE, which simulates extensional flow) and a commercial twin‐screw extruder (TSE), respectively. Furthermore, in order to improve the mechanical properties of the immiscible PA66/PPO blends, PPO‐grafted maleic anhydride (PPO‐g‐MA) and styrene–ethylene–butylene–styrene (SEBS) block copolymer were used. The mechanical properties, phase morphology, and rheological properties of both binary PA66/PPO blends and toughened PA66/PPO/PPO‐g‐MA blends were comprehensively investigated to compare the above mentioned two processing method. Samples processed with TTSE exhibited better mechanical properties than the TSE‐processed blends. The morphologies of the blends were examined by scanning electron microscopy, exhibiting smaller particles sizes and narrower particle size distributions, which were attributed to the significant effects of extensional flow in TTSE. The toughening mechanism of compatibilized blends was investigated through morphology analysis, dynamic mechanical, and rhelogical analysis. Thus, TTSE with an extensional effect was proved to be efficient in the blending of high viscosity ratio polymers. POLYM. ENG. SCI., 57:1090–1098, 2017. © 2016 Society of Plastics Engineers  相似文献   

20.
Melt blending of linear low density polyethylene (LLDPE) and polylactide (PLA) was performed in an extrusion mixer with post extrusion blown film attachment with and without compatibilizer‐grafted low density polyethylene maleic anhydride. The blend compositions were optimized for tensile properties as per ASTM D 882‐91. On the basis of this, LLDPE 80 [80 wt % LLDPE and 20 wt % poly(L ‐lactic acid) (PLLA)] and MA‐g‐low‐density polyethylene 80/4 (80 wt % LLDPE, 20 wt % PLLA, and 4 phr compatibilizer) were found to be an optimum composition. The blends were characterized according to their mechanical, thermal, and morphological behavior. Fourier transform infrared spectroscopy revealed that the presence of compatibilizer enhanced the blend compatibility to some extent. The morphological characteristics of the blends with and without compatibilizer were examined by scanning electron microscopy. The dispersion of PLLA in the LLDPE matrix increased with the addition of compatibilizer. This blend may be used for packaging applications. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号