首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以2,4-二氯苯硫酚为原料,采用一步法合成超支化聚苯硫醚。笔者运用红外光谱、拉曼光谱、荧光光谱、示差扫描量热分析、热重分析、广角X-射线衍射、溶解实验等分析手段,对超支化聚苯硫醚和线性聚苯硫醚的基本性能进行了对比。由于两者结构上的差异,使得两者表现出不同的特性。超支化聚苯硫醚具有三取代苯结构,具有很强的荧光效应、完全的不结晶、溶于有机溶剂、热降解温度低于线性聚苯硫醚约60℃等特性。广角X-射线衍射谱图也和结晶、无定型线性聚苯硫醚有很大不同。  相似文献   

2.
With a view to study and compare the properties of poly(phenyienc sulfide)s containing carbonyl and sulfonyl backbone units, 1,4-bis(phenylthio)-benzene, and bis(4-phenylthio)diphenyl sulfone, were prepared and subjected to Fricdel-Crafts type polycondensation with various aromatic diacid chlorides. The resulting polymers had inherent viscosities in the range 0.101—0.141 dl/g. These polymers were not soluble in common organic solvents and exhibited good thermal stabilities.  相似文献   

3.
An advanced heat‐resistant hyperbranched poly(phenylene sulfide) (HPPS) had been subjected to dynamic thermogravimetric analysis (TGA) in nitrogen. The presence of a single peak in the DTG cures suggested that weight loss occurs in a single stage. The thermal decomposition kinetics had been analyzed by applying the Kissinger, Friedman and Ozawa‐Flynn methods. The E values determined for the hyperbranched PPS using these analyses were found to be 183.1, 189.2, 193.9 kJ mol?1, respectively. Coats‐Redfern method was used to discuss the probable degradation mechanisms. The solid‐state decomposition mechanism followed by the degradation stage of HPPS was Phase boundary controlled mechanism (R1). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Poly(phenylene sulfide ether) and poly(phenylene sulfoxide ether sulfide ether) (PPSOESE) were successfully prepared and their structures were proved by several analytical techniques in the present work. The molecular weight (MW) of PPSOESE, a soluble polymer in common organic solvent at room temperature, was determined by gel permeation chromatography. Based on the conversion reaction of the two polymers, the MW of PPSE was calculated and correlated with its intrinsic viscosity. As a result, the Mark‐Houwink equation for PPSE was concluded. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
The morphology of nonisothermally crystallized poly(phenylene sulfide) (PPS) and its blend with poly (ether ether ketone) (PEEK) have been observed by polarized optical microscope (POM) equipped with a hot stage. The nonisothermal crystallization behavior of PPS and PEEK/PPS blend has also been investigated by differential scanning calorimetry (DSC). The maximum crystallization temperature for PEEK/PPS blend is about 15°C higher than that of neat PPS, and the crystallization rate, characterized by half crystallization time, of the PEEK/PPS blend is also higher than that of the neat PPS. These results indicate that the PEEK acts as an effective nucleation agent and greatly accelerates the crystallization rate of PPS. The Ozawa model was used to analyze the nonisothermal crystallization kinetics of PPS and its blends. The Avrami exponent values of neat PPS are higher than that of its blend, which shows that the presence of PEEK changed the nucleation type of PPS from homogeneous nucleation to heterogeneous nucleation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
Thermal properties of poly(phenylene sulfide amide) (PPSA) prepared using sodium sulfide, sulfur, and thiourea as sulfur sources which reacted with dichlorobenzamide (DCBA) and alkali in polar organic solvent at the atmospheric pressure, were studied. The glass transition temperature (Tg), melting point temperature (Tm), and melting enthalpy (ΔHm) of the related polymers were obtained by use of differential scanning calorimetry analysis. The results are: Tg = 103.4–104.5°C, Tm = 291.5–304.7°C, and ΔHm = 104.4–115.4 J/g. Thermal properties such as thermal decomposition temperature and decomposition kinetics were investigated by thermogravimetric analysis under nitrogen. The initial and maximum rate temperatures of degradation were found to be 401.5–411.7°C and 437–477°C, respectively. The parameters of thermal decomposition kinetics of PPSAs were worked out to be: activation energy of degradation was 135 to 148 kJ/mol and the 60-s half-life temperature was 360 to 371°C. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1227–1230, 1997  相似文献   

7.
Ri-Chao Zhang  Yi Xu  Ai Lu  Kemei Cheng  Yigang Huang  Zhong-Ming Li   《Polymer》2008,49(10):2604-2613
The crystalline morphology of poly(phenylene sulfide) (PPS) isothermally crystallized from the melt under shear has been observed by polarized optical microscope (POM) equipped with a CSS450 hot-stage. The shish–kebab-like fibrillar crystal structure is formed at a higher shear rate or for a longer shear time, which is ascribed to the tight aggregation of numerous oriented nuclei in the direction of shear. The crystallization induction time of PPS decreases with the shear time, indicating that the shear accelerates the formation of stable crystal nuclei. Under shear, the increase of spherulite growth rate results from highly oriented chains. The melting behavior of shear-induced crystallized PPS performed by differential scanning calorimetry (DSC) shows multiple melting peaks. The lower melting peak corresponds to melting of imperfect crystal, and the degree of crystal perfection decreases as the shear rate increases. The higher melting peak is related to the orientation of molecular chains. These oriented molecular chains form the orientation nuclei which have higher thermal stability than the kebab-like lamellae that are developed later. A new model based on the above observation has been proposed to explain the mechanism of shish–kebab-like fibrillar crystal formation under shear flow.  相似文献   

8.
Crystallization and melting behaviors of poly(p‐phenylene sulfide) (PPS) in blends with poly(ether sulfone) (PES) prepared by melt‐mixing were investigated by differential scanning calorimetry (DSC). The blends showed two glass transition temperatures corresponding to PPS‐ and PES‐rich phases, which increased with increasing PES content, indicating that PPS and PES have some compatibility. The cold crystallization temperature of the blended PPS was a little higher than that of pure PPS. Also, the heats of crystallization and melting of the blended PPS decreased with increasing PES content, indicating that the degree of crystallinity decreased with an increase of PES content. The isothermal crystallization studies revealed that the crystallization of PPS is accelerated by blending PPS with 10 wt % PES and further addition results in the retardation. The Avrami exponent n was about 4 independent on blend composition. The activation energy of crystallization increased by blending with PES. The equilibrium melting point decreased linearly with increasing PES content. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1686–1692, 1999  相似文献   

9.
Poly(phenylene sulfide ketone) (PPSK) was synthesized by the reaction of sodium sulfide with 4,4′‐dichlorobenzophenone in N‐methyl‐2‐pyrrolidinone through the Phillips process. The effect of water hydration of sodium sulfide in solution, polymerization temperature, polymerization time, and stoichiometric ratio of monomers on the polymerization behavior of PPSK were investigated with respect to inherent viscosity and yield. Thermal degradation parameters of PPSK synthesized were investigated by dynamic thermogravimetry. To determine thermal degradation energy, Kissinger, Ozawa, and Friedman methods were used and activation energies were 202.3, 233.6, and 232.2 kJ/mol, respectively. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1329–1337, 2000  相似文献   

10.
The nonisothermal crystallization kinetics of linear Poly(phenylene sulfide) (PPS) was studied with differential scanning calorimetry. Ozawa theory, Jeziorny model, and Mo equation were applied to describe the crystallization kinetics and to determine the crystallization parameters and mechanism of the linear PPS resin. The crystallization activation energies were also calculated using Kissinger formula and Flynn‐Wall‐Ozawa equation, respectively. According to the Ozawa model, it is found that instantaneous nucleation takes place during crystallization of PPS; the Ozawa exponent m is 3 in initial stage of crystallization; as the crystallization temperature decreases, the value of m reduces, and the growth rate of crystal almost keeps a constant. The Avrami exponent n obtained from Jeziorny model fluctuate around 1.84. Based on the Jeziorny model, the crystallization rate increases with increasing the cooling rate, but it does not change any longer when the cooling rate rise to a certain value. Mo equation also exhibits great advantages in treating the nonisothermal crystallization kinetics of PPS. The activation energy E of nonisothermal crystallization process of PPS is calculated to be −162.73 kJ/mol by the Kissinger formula, and the mean value of E determined by Flynn‐Wall‐Ozawa equation is −152.40 kJ/mol. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
High molecular weight poly(phenylene sulfide ether) (PPSE) was successfully synthesized by reaction of 4,4′‐dihydroxy diphenyl sulfide with 4,4′‐dichloro diphenyl sulfide in N‐methyl‐2‐pyrrolidone (NMP). The influence of polymerization conditions on the intrinsic viscosity and yield of PPSE was investigated and the optimized reaction condition was concluded. Reactions at about 180°C for 6 h along with sodium benzoate as an additive and monomer concentration of 0.588 mol/L NMP were found to produce the highest intrinsic viscosity (0.55 dL/g). Longer reaction time and/or higher temperature reduced the intrinsic viscosity and yield of the resulting product, probably due to side reactions, such as reductive dehalogenation and chemical degradation. X‐ray diffraction indicated that the polymer possessed of orthorhombic cell and had a high crystallinity of 65.8%. The high molecular weight PPSE is a crystalline polymer with Tm of 252°C and Tmc of 224°C. The polymer shows good chemical resistance, but is soluble in organic amide, halo‐hydrocarbon and oxohydrocarbon solvent at a temperature over 150°C. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
The glass transition temperature (Tg) of poly(phenylene sulfide) (PPS) with various crystalline fractions has been studied using dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). The DSC measurements show that Tg can be observed from the heating curves for the PPS sample with very low crystallinity, and no Tg is observed when the crystallinity is over 8%. DMA indicates that crystallinity has an important effect on molecular chain segment motion of PPS. When the crystallinity, Xc, of PPS is over 38%, there is only one chain segment motion, which mainly results from the crystalline chain vibration; while three different chain segment motions occur for PPS samples with lower crystallinity (Xc < 26%), which are amorphous chain segment motion, crystalline chain segment motion and constrained amorphous chain segment motion. Tg of PPS is mainly caused by the amorphous chain segment motion which is independent of the crystallinity, while the relaxation temperature corresponding to crystalline chain motion shifts to lower temperature as the crystallinity increases. The reduction of the relaxation temperature can be attributed to the disorder‐order transition of amorphous chains for PPS with lower crystallinity. © 2012 Society of Chemical Industry  相似文献   

13.
Multiwall carbon nanotube reinforced poly (phenylene sulfide) (PPS) nanocomposites were successfully fabricated through melt compounding. Structural, electrical, thermal, rheological, and mechanical properties of the nanocomposites were systematically studied as a function of carbon nanotube (CNT) fraction. Electrical conductivity of the polymer was dramatically enhanced at low loading level of the nanotubes; the electrical percolation threshold lay between 1 and 2 wt % of the CNTs. Rheological properties of the PPS nanocomposites also showed a sudden change with the CNT fraction; the percolation threshold was in the range of 0–0.5 wt % of CNTs. The difference in electrical and rheological percolation threshold was mainly due to the different requirements needed in the carbon nanotube network in different stages. The crystallization and melting behavior of CNT‐filled PPS nanocomposites were studied with differential scanning calorimetry; no new crystalline form of PPS was observed in the nanocomposites, but the crystallization rate was reduced. The thermal and mechanical properties of the nanocomposites were also investigated, and both of them showed significant increase with CNT fraction. For 5 wt % of CNT‐filled PPS composite, the onset of degradation temperature increased by about 13.5°C, the modulus increased by about 33%, and tensile strength increased by about 172%. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
The crystallization and multiple melting behavior of poly(phenylene sulfide) (PPS) and its blends with amorphous thermoplastic bisphenol A polysulfone (PSF) and phenolphthalein poly(ether ketone) (PEK-C), crystalline thermoplastic poly(ether ether ketone) (PEEK), and thermosetting bismaleimide (BMI) resin were investigated by a differential scanning calorimeter (DSC). The addition of PSF and PEK-C was found to have no influence on the crystallization temperature (Tc) and heat of crystallization (ΔHc) of PPS. A significant increase in the value of Tc and the intensity of the Tc peak of PPS was observed and the crystallization of PPS can be accelerated in the presence of the PEEK component. An increase in the Tc of PPS can also be accelerated in the BMI/PPS blend, but was no more significant than that in the PEEK/PPS blend. The Tc of PPS in the PEEK/PPS blends is dependent on the maximum temperature of the heating scans and can be divided into three temperature regions. The addition of a second component has no influence on the formation of a multiple melting peak. The double melting peaks can also be observed when PPS and its blends are crystallized dynamically from the molten state. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 637–644, 1998  相似文献   

15.
Thermal degradation of poly(phenylene sulfide ether) (PPSE) was investigated by using thermogravimetry (TG) under air and nitrogen atmosphere. It was found that the existence of oxygen depressed the thermal stability of PPSE and changed the mechanism of thermal degradation. The influences of molecular weight and heating rate on the decomposition of PPSE were also investigated under N2 atmosphere. The results showed that the thermal stability of PPSE was excellent and can be further enhanced by increasing molecular weight. A simple kinetic model concerning two parallel reactions in overall temperature range was proposed to describe the thermal degradation process of PPSE in nitrogen. Kinetic analysis of the dynamic TG curves for PPSE was carried out by using Kissinger, Flynn–Wall–Ozawa, and Coats–Redfern methods. The kinetics of PPSE degradation displayed that the two parallel reactions were in accordance with the first‐order equation. The kinetic model was further validated by comparing the experimental and calculated results. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
This article investigates the comprehensive properties of sulfonated poly(phenylene oxide) (SPPO) membranes with different sulfonation degrees and presents the completion of previous work necessary for the application of SPPO membranes to proton‐exchange membrane fuel cells. The sulfonation level has been accurately determined by conductometric titration and 1H‐NMR, and the glass‐transition temperature has been obtained with both differential scanning calorimetry and dynamic mechanical thermal analysis. Sulfonic groups attached to the aromatic ring in the poly(phenylene oxide) backbone split at 220–340°C, but the main‐chain splitting temperature of SPPO is similar to that of the pure polymer. In addition, the effects of sulfonic groups and water on the tensile strength of these membranes have been studied. An increase in the sulfonate groups in the polymer results in an increase in the water uptake. Atomic force microscopy phase images of the acid‐form membranes clearly show the hydrophilic domains, and the ionic regions of the membranes with a low sulfonation degree are isolated and become connected to produce a cocontinuous morphology as the degree of sulfonation increases. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1244–1250, 2005  相似文献   

17.
In this article, a terpolymer of ethylene, maleic anhydride, and glycidyl methacrylate (EMG) was used to enhance the compatibilization between poly(phenylene sulfide) (PPS) and polyamide‐66 (PA66). The mechanical properties, morphology, crystalline and melting behavior, and rheology of blends were discussed. The results showed that EMG was a good compatibilizer for PPS and PA66 through chemical reaction with them. The new generated polymer could prevent the aggregation of dispersed particles and reinforce the interface bonding. In addition, it could not only act as a nucleating agent for PA66 to refine its spherulites and improve its crystallinity but also promote the apparent viscosity of blends and enhance the non‐Newtonian behavior. The results will be useful to make high performance PPS/PA66 alloy with low cost and enlarge the application scope of PPS and PA66 resin. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
The addition of side groups to improve the photooxidative stability of polymers used in polymer-based light-emitting diodes (LEDs) is explored. Infrared spectroscopy and computational chemistry techniques are used to study the effects of chemical substitution of the reactive vinylene moiety in poly(phenylene vinylene) (PPV). The bond order of the vinylene group in small oligomers is calculated using semiempirical techniques to assess the improvement in stability toward oxidants such as singlet oxygen. We find that PPV dimers allow relative comparisons across a range of possible substitutions. Experimental results correlate well with these calculations. The addition of electron-withdrawing substituents, such as nitrile groups, to the vinylene moiety is found to be particularly effective in reducing the reactivity of alkoxy-substituted PPV toward singlet oxygen. The photooxidative stability of a poly(phenylene acetylene) (PPA) derivative is also studied. It appears that this family of polymers is more stable toward photooxidation than are its PPV analogs. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2451–2458, 1998  相似文献   

19.
To investigate the nucleation effect of hydroxyl‐purified multiwalled carbon nanotubes (MWNTs‐OH) in poly(p‐phenylenesulfide) (PPS), a series of composites were prepared by blending PPS with MWNTs‐OH at 1, 2, and 3 wt %, respectively. Under SEM observation MWNTs‐OH were found homogeneously dispersed in the PPS matrix. DSC thermograms revealed that the enthalpy (ΔHc) of the composites increased with increasing MWNT‐OH content, whereas the crystallization temperature (Tc) decreased progressively. The decrease in Tc was in accordance with the smaller crystallite size determined with WXRD characterization, and the increase in ΔHc was evidenced by FTIR and XPS analyses. The higher ΔHc shows that MWNTs‐OH serves as a nucleating agent, providing sufficiently multiplied sites for crystal growth. The lowering of Tc was attributed not only to MWNTs‐OH network hindrance to PPS chain fusing rearrangement, but also to a poorer affinity between MWNTs‐OH and PPS; both effects coordinately govern Tc of PPS/MWNTs‐OH composites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
玻纤增强聚苯硫醚复合材料的增韧研究   总被引:1,自引:0,他引:1  
针对玻纤增强聚苯硫醚材料韧性差的问题,对聚苯硫醚傲璃纤维复合体系的增韧进行了研究,考察了玻纤、改性聚合物、有机超细粒子对复合材料力学性能的影响。采用基体增韧(预增韧)与有机超细粒子增韧技术,在保持复合材料拉伸强度和模量的同时,较大地提高了冲击强度,获得了综合力学性能优异的纤维增强聚苯硫醚材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号