首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyaniline/ZnFe2O4 nanocomposites were synthesized by a simple and inexpensive one‐step in situ polymerization method in the presence of ZnFe2O4 nanoparticles. The structural, morphological, and electrical properties of the samples were characterized by wide angle X‐ray diffraction (WAXD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). WAXD and SEM revealed the formation of polyaniline/ZnFe2O4 nanocomposites. Infrared spectroscopy indicated that there was some interaction between the ZnFe2O4 nanoparticles and polyaniline. The dc electrical conductivity measurements were carried in the temperature range of 80 to 300 K. With increase in the doping concentration of ZnFe2O4, the conductivity of the nanocomposites found to be decreasing from 5.15 to 0.92 Scm−1 and the temperature dependent resistivity follows ln ρ(T) ∼ T−1/2 behavior. The nanocomposites (80 wt % of ZnFe2O4) show a more negative magnetoresistance compared with that of pure polyaniline (PANI). These results suggest that the interaction between the polymer matrix PANI and zinc nanoparticles take place in these nanocomposites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
以苯胺(An)、氯化镍(NiCl2×6H2O)为原料,原位聚合法合成聚苯胺/镍纳米复合微粒。采用X射线衍射仪、扫描电镜、傅里叶变换红外光谱仪、振动样品磁强计(VSM)及四探针测试仪技术表征了复合微粒的结构、形貌和电磁性能。结果表明:复合微粒在室温外加磁场下表现出铁磁性物质具有的磁滞现象,饱和磁化强度为9.44 emu/g,复合微粒在室温下的电导率为5×10-3 S/cm。  相似文献   

3.
The polymer electrolyte based poly(ethylene oxide) complexed with conducting polyaniline (PANI) has been prepared in different weight percentages. The complexation is confirmed by Fourier transform infrared spectroscopy (FTIR).The change in morphology is studied by using scanning electron microscopy. The DC conductivity measurements are carried out using Keithley digital multimeter. It is seen that DC conductivity shows exponential behavior for all PEO : PANI complexes. It is observed that among all the PEO : PANI complexes, 50 wt % of PEO in PANI shows highest conductivity. Electrochemical cell parameters for battery applications at room temperature also have been determined. The samples are fabricated for battery application in the configuration of Na:(PEO : PANI):(I2 + C + sample), and their experimental data are measured using Wagner polarization technique. The cell parameters results in an open-circuit voltage of 0.4 V and a short-circuit current of 902 μA for PEO : PANI (50 : 50) composite. Hence, these composites can be better candidates for the polymer electrolyte studies. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
Nylon 6/clay nanocomposites were studied by dielectric relaxation spectroscopy (DRS) to correlate morphology and microstructure with relaxation behavior of the polymer matrix at the molecular level. Partially exfoliated clay microstructure was achieved by extruding nylon 6 with surfactant-treated montmorillonite clays. A new on-line dielectric slit die sensor was used to examine the melt state properties during extrusion compounding. Solid state properties were probed by off-line DRS over a temperature range from −50 to 180 °C in a frequency range from 10−3 to 106 Hz. Using non-linear regression methods in conjunction with the temperature-frequency positions of relaxations observed in the dielectric loss data, the experimental data were fit with the Havriliak-Negami and Cole-Cole dielectric relaxation functions corrected for electrode polarization and DC conductivity. Characteristic frequency, relaxation strength, and DC conductivities were extracted from curves with overlapping relaxation modes. Two dielectric relaxations were observed in the composite melt: the α relaxation associated with molecular segmental motion, and a Maxwell-Wagner relaxation (MW) resulting from interfacial polarization at the resin/clay interface. Analysis of the solid-state data yielded a comprehensive master plot of dielectric relaxations attributed to segmental and local molecular dynamics and other relaxations resulting from water and Maxwell-Wagner interfacial polarization. The impact of clay fillers is seen in nearly all relaxation processes changing both characteristic frequency and strength of the relaxation.  相似文献   

5.
Polyvinyl alcohol (PVA) films filled with different concentrations of CoBr2 were prepared using the casting method. These films were characterized by FTIR, UV–visible, XRD, and ESR techniques. FTIR spectra were used to clarify the structural variations due to the filling level from CoBr2. The observed bands at 3484, 1733, and 1640 cm?1 were assigned to O? H, C?O, and C?C stretching vibrations, respectively. UV–visible spectra shows the absorption band at 280 nm which is assigned to π → π* transition. This indicates the presence of unsaturated bonds in tail to head of PVA. Optical energy gap decreased with increasing the concentration of CoBr2. X‐ray diffraction scans show some decrease in the degree of crystallinity in the filled films which reveals an increase in amorphous phase of PVA due to the interaction between Co+2 and polymeric matrix causing a molecular rearrangement within the amorphous phase of PVA. The observed complex ESR spectrum due to hyperfine interactions confirms the role of free radicals. Spectroscopic and magnetic properties of PVA/CoBr2 composite films were investigated and compared with those of PVA alone. The results show that the change of the structure due to the interaction of filler with the polymer. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Formaldehyde emissions are nowadays trying to be reduced because of its atmospheric pollutant character. Besides, it is encouraged the use of polymeric materials synthesized from biomass wastes as row materials. For this reason, furan resins would be an alternative to phenolic resins, where formaldehyde is replaced by furfural as a reactant. Regarding, the addition of nanoparticles to the furan resin should enhance their performance as metal coatings with good thermal and oxidative resistance. The aim of this article is to study the influence of the in situ addition of different type of nanoparticles on the chemical reactions involved in the synthesis of a furan resin. From the viscosity measurements it was observed that the addition of the nanoreinforcements led to a higher resin reaction rate. Differences in the final chemical structure among the materials were also observed by infrared spectroscopy analyses. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
ABSTRACT

Polyaniline (PANI) encapsulating silver chloride nanoparticles embedded on the surface of gelatin nanofibers were prepared. The interaction of PANI/gelatin with AgCl and crystallinity of the composites are characterized by FTIR and XRD. The surface framework of the composites was studied by SEM and TEM. Increase of AgCl has brought out significant increase of DC conductivity of the composites. The hydrophilic GEL acts as a plasticizer in the PANI/GeL-AgCl increases the mobility of charge carriers in the composites which influences the conductivity. Such composites are used in electric devices, sensors, and functional coatings for their high electrical conductivity.  相似文献   

8.
This work demonstrates the fabrications and characterizations of polyaniline (PAni) composites containing single-walled carbon nanotubes (SWCNTs), graphite nanosheets (GNS), or hybrid fillers (SWCNTs/GNS). The characterization of microstructure, examination of fracture surface morphologies, and measurement of electric conductivity and electromagnetic interference shielding efficiency (EMI SE) were performed. It was found that both the electric conductivity and the EMI SE increase with filler loading, and the nanocomposites filled with 1.0 wt.% SWCNTs/GNS possessed the highest electric conductivity of 16.2 S/cm and total EMI SE of 27.0 dB. The experimental results also show that absorption is the primary mechanism of EMI SE for all of the loadings and fillers.  相似文献   

9.
A novel conductivity composite from polyaniline (PANI) and layered zirconium phenylphosphonate (ZrPP) was carried out through in situ chemical oxidation polymerization by the addition of an appropriate amount of ammonium peroxodisulfate solution, and the relevant structure and properties were investigated. The composites were characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, and scanning electron microscopy. The electrical conductivity was measured by the four‐probe technique. The electrical conductivity of the composites improved with increasing ZrPP loading, and the materials had reasonably good electrical properties, even with 40 wt % loadings of ZrPP in the polymer matrix. The results reveal that π–π interaction was formed in the composites, which enhanced the electrical conductivity of the composites compared to that in neat PANI. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Two series of polyaniline–TiO2 nanocomposite materials were prepared in base form by in situ polymerization of aniline with inorganic fillers using TiO2 nanoparticles (P25) and TiO2 colloids (Hombikat), respectively. The effect of particle sizes and contents of TiO2 materials on their dielectric properties was evaluated. The as-synthesized polyaniline–TiO2 nanocomposite materials were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermal analysis (DTA/TGA), and X-ray diffraction (XRD). Dielectric properties of polyaniline–TiO2 nanocomposites in the form of films were measured at 1 KHz–1 MHz and a temperature range of 35–150 °C. Higher dielectric constants and dielectric losses of polyaniline–TiO2 nanocomposites than those of neat PANI were found. PANI–TiO2 nanocomposites derived from P25 exhibited higher dielectric constants and losses than those from Hombikat TiO2 colloids. Electrical conductivity measurements indicate that the conductivity of nanocomposites is increased with TiO2 content. The dielectric properties and conductivities are considered to be enhanced due to the addition of TiO2, which might induce the formation of a more efficient network for charge transport in the base polyaniline matrix.  相似文献   

11.
吴子华  谢华清  曾庆峰 《化工学报》2012,63(Z1):214-218
以溶剂热法合成聚对亚苯基/LiNi0.5Fe2O4纳米复合材料,分别对放电等离子烧结时不同保温时间制备的样品的电导率和热导率进行了研究。发现,保温时间不同对聚对亚苯基/ LiNi0.5Fe2O4纳米复合材料的电导率没有明显的影响,但对热导率具有一定的影响,保温时间越长热导率越大。保温时间延长,导致铁氧体晶粒长大,使材料体系的声子平均自由程增加,因此声子热导率增加,从而导致总热导率的增加。由于铁氧体具有较差的电输运特性,因此晶粒长大对电导率大小没有明显的影响。  相似文献   

12.
Polypropylene (PP) nanocomposites were prepared by melt intercalation in an intermeshing corotating twin‐screw extruder. The effect of molecular weight of PP‐MA (maleic anhydride‐ modified polypropylene) on clay dispersion and mechanical properties of nanocomposites was investigated. After injection molding, the tensile properties and impact strength were measured. The best overall mechanical properties were found for composites containing PP‐MA having the highest molecular weight. The basal spacing of clay in the composites was measured by X‐ray diffraction (XRD). Nanoscale morphology of the samples was observed by transmission electron microscopy (TEM). The crystallization kinetics was measured by differential scanning calorimetry (DSC) and optical microscopy at a fixed crystallization temperature. Increasing the clay content in PP‐ MA330k/clay, a well‐dispersed two‐component system, caused the impact strength to decrease while the crystallization kinetics and the spherulite size remained almost the same. On the other hand, PP/PP‐MA330k/clay, an intercalated three‐component system containing some dispersed clay as well as the clay tactoids, showed a much smaller size of spherulites and a slight increase in impact strength with increasing the clay content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1562–1570, 2002  相似文献   

13.
刘璇  吕伟  吕冰洁  吴莉莉  刘鑫 《现代化工》2013,33(6):54-56,58
采用电化学阳极氧化法制得结构规则、有序的TiO2纳米管,以TiO2纳米管为基质,在一定水热条件下合成核-壳结构的TiO2/ZnO复合纳米材料。利用X射线衍射(XRD)、扫描电镜(SEM)、紫外-可见光谱(UV-VIS DRS)等分析手段对所得材料的结构、形貌及光催化性能进行分析和表征。实验结果表明:TiO2/ZnO复合纳米材料的光催化性能较单一TiO2、ZnO纳米材料有所提高。当前驱体溶液加入量为20 mL,甲基橙溶液初始pH为3时,TiO2/ZnO复合纳米材料的光催化效率最高。  相似文献   

14.
The uniform polyaniline nanoparticles with the size of about 50 nm were electropolymerized using the method of constant potential of 0.8 V. The effects of rare‐earth cations and magnetic field on the preparation and properties of polyaniline were investigated. It was found that the addition of rare‐earth cations could enhance the effect of magnetic field on the properties of polyaniline. The resulting products were characterized by FTIR spectra, UV–vis spectra and scanning electron microscope (SEM); the conductivity and cyclic voltammetry (CV) were also investigated. The experimental results show that the magnetic field has an orientation effect on polyaniline chain and there exists the interaction between rare‐earth cations and polyaniline chain because of the electrostatic interaction. The addition of rare‐earth cations can increase electrical conductivity, moreover, the effect of NdCl3 and ErCl3 on properties of polyaniline is more remarkable than LaCl3 and SmCl3. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2286–2294, 2007  相似文献   

15.
organoclay‐modified polyurethane/epoxy interpenetrating network nanocomposites (oM‐PU/EP nanocomposites) were prepared by adding organophilic montmorillonite (oMMT) to interpenetrating polymer networks (IPNs) of polyurethane and epoxy resin (PU/EP) which had been prepared by a sequential polymerization technique. Wide‐angle X‐ray diffraction (WAXD) and transmission electronic microscopy (TEM) analysis showed that the interpenetrating process of PU and EP improved the exfoliation and dispersion degree of oMMT. The effects of the NCO/OH ratio (isocyanate index), the weight ratio of PU/EP and oMMT content on the phase structure and the mechanical properties of the oM‐PU/EP nanocomposites were studied by tensile testing and scanning electronic microscopy (SEM). Water absorption tests showed that the PU/EP interpenetrating networks and oMMT had synergistic effects on improvement in the water resistance of the oM‐PU/EP nanocomposites. Differential scanning calorimetry (DSC) analysis showed that PU was compatible with EP and that the glass transition temperature (Tg) of the oM‐PU/EP nanocomposites increased with the oMMT content up to 3 wt%, and then decreased with further increasing oMMT content. The thermal stability of these nanocomposites with various oMMT contents was studied by thermogravimetric analysis (TGA), and the mechanism of thermal stability improvement was discussed according to the experimental results. Copyright © 2005 Society of Chemical Industry  相似文献   

16.
A newly developed kind of layered clay, rectorite (REC), has been used to yield intercalated or exfoliated thermoplastic polyurethane rubber (TPUR) nanocomposites by melt‐processing intercalation. Because of the swollen layered structure of REC, similar to that of montmorillonite, organic rectorites (OREC) can also be obtained through ion‐exchange reaction with two different quaternary ammonium salts (QAS1, QAS2) and benzidine (QAS3). The microstructure and dispersibility of OREC layers in TPUR matrix were examined by X‐ray diffraction and transmission electron microscopy, which revealed not only that the composites with lower amounts of clay are intercalation or part exfoliation nanocomposites, but also that the mechanical properties of the composites were substantially enhanced. The maximum ultimate tensile strength for TPUR/OREC nanocomposites appeared at 2 wt % OREC loading. With increasing OREC contents, the tear strength of the composites increased significantly. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 608–614, 2004  相似文献   

17.
Polypropylene (PP)/Multiwall carbon nanotubes (MWCNTs) nanocomposites were fabricated via melt compounding that utilizes a corotating twin‐screw extruder. Two commercially available MWCNTs, Baytubes C150P and C70P, were incorporated into PP matrix at concentration of 3 wt %. The nanocomposites samples were analyzed using scanning electron microscopy, dynamic mechanical analysis (DMA), nanoindentation test, and picoammeter. It was found that both MWCNTs types were well distributed and dispersed in the PP matrix and no agglomeration of MWCNTs was observed. The DMA analysis results showed that the incorporation of MWCNTs enhanced the storage modulus and thermal stability of the PP matrix. Whereas, nanoindentation creep results showed that the creep rate and displacement of the PP/MWCNTs nanocomposites was lower than the neat PP, in which C70P < C150P < PP. The reduction of creep rate and creep displacement was associated to the improvement of creep resistance. There were also improvements on hardness and stiffness of the nanocomposites. Additionally, the electrical resistivity of the neat PP decreased with the incorporation of MWCNTs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45293.  相似文献   

18.
Composites of conducting polymers and metal oxides have a potential role in electronic devices because of their enhanced physical and electronic properties. An in situ synthesis of metal oxide nanocomposites of polyaniline (PANI) and tanninsulfonic acid doped PANI was carried out at ?10°C with two different ratios of aniline to sodium persulfate (oxidant) and the simultaneous incorporation of TiO2, Al2O3, and ZnO nanopowders. The products were characterized by X‐ray diffraction (XRD), thermal analysis, spectroscopy, and electrical conductivity measurements. XRD and thermogravimetric analysis confirmed the presence of the metal oxide in the final product, whereas the spectroscopic characterization revealed interactions among the tannin, metal oxides, and PANI. The electrical properties were determined by four‐point‐probe bulk conductivity measurements. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
In contrast to the bulk of published nanocomposite studies, in this study we investigated the mechanical properties of alumina/epoxy nanocomposites manufactured with nanofillers having a fiber or whisker morphology. The article describes how ultrasonic dispersion and in situ polymerization were used to incorporate these 2–4 nm diameter fibers (with aspect ratios of 25–50) into a two‐part epoxy resin (Epon 826/Epicure 9551). The use of untreated and surface‐modified nanoparticles is contrasted, and improvements in both the tensile strength and modulus were observed at low filler loadings. Microstructural characterization of the nanocomposites via multiscale digital image analysis was used to interpret the mechanical properties and was found to be useful for direct comparison with other nanocomposites. In addition, superior performance was demonstrated through comparisons with numerous nanocomposites with nanoparticle reinforcements ranging from carbon nanofibers to spherical alumina particles. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
The effect of vinyl acetat (VA) on the morphological, thermal stability, and mechanical properties of heterophasic polypropylene–(ethylene‐propylene) copolymer (PP–EP)/poly(ethylene vinyl acetate) (EVA)/organoclay nanocomposites was studied. Tailored organoclay C20A was selected to enhance the exfoliation of the clay platelets. Depending on the VA content, there were two morphological organoclay populations in the systems. Both populations were directly observed by scanning transmission electron microscopy and measured by wide‐angle X‐ray diffraction and small‐angle X‐ray scattering. The content of VA in EVA originated spherical and elongated morphologies in the resultant nanocomposites. High‐VA content led to a better intercalation of the organoclay platelets. Measurement of thermal properties suggested that higher VA decreases thermal stability in samples both with and without organoclay, although nanocomposites had higher thermal stability than samples without clay. The storage modulus increased both with nanoclay and VA content. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号