首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An amphiphilic copolymer poly(acrylic acid)‐block‐poly(styrene) (PAA‐b‐PS) with a trithiocarbonate reactive group was used in the ab initio reversible addition‐fragmentation chain transfer (RAFT) emulsion polymerization of vinylidene chloride (VDC). The fast polymerization and high conversion were achieved. The parameters for a good control over the formation of well‐defined PAA‐b‐PS‐b‐PVDC amphiphilic block copolymers and self‐stabilized latexes were identified. To improve the emulsion stability and prevent the desorption of water‐soluble initiating radicals, the acid groups of PAA‐b‐PS were neutralized by NaOH at the later stage of polymerization. The PAA‐b‐PS‐b‐PVDC block copolymer with a high molar mass of 30 kg mol−1 and the stable latex with 30 wt % solid content was obtained. The kinetics of RAFT emulsion copolymerization of VDC in a living manner was first investigated. The as‐prepared PAA‐b‐PS‐b‐PVDC latex particles were further used as seeds in the emulsion polymerization of styrene, enabling the preparation of novel PAA‐b‐PS‐b‐PVDC‐b‐PS tetra‐block copolymers with a molar mass of 76 kg mol−1 and a relatively low molecular weight distribution of 1.6. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40391.  相似文献   

2.
Syntheses of monodisperse poly[(styrene)‐co‐(n‐butyl acrylate)] and poly[(styrene)‐co‐(2‐ethylhexyl acrylate)] were carried out by dispersion polymerization. The reactions were performed in the mixed solvent of ethanol–water in the presence of azo‐bisisobutyronitrile and poly(N‐vinylpyrrolidone) as the initiator and dispersant, respectively. The effects of reaction parameters, that is the type and concentration of dispersant, ratio of the mixed solvent, reaction temperature, agitation rate, monomer composition between styrene and n‐butyl acrylate or 2‐ethylhexyl acrylate, crosslinking agent and reaction time on the particle size, size distribution and average molecular weights of the resulting copolymer were thoroughly investigated. The resulting copolymer particles were smooth on their spherical surface and the sizes were in the range 0.6–1.8 µm with a narrow size distribution. In most cases, a correlation between small particle sizes with high average molecular weights was observed. The average particle size generally increased with increasing reaction temperature, time and acrylate monomer content. In contrast, the particle size decreased as the molecular weight, concentration of dispersant, polarity of the medium or agitation rate was increased. The glass transition temperature (Tg) of the copolymers can be controlled by the mole ratio of the comonomer. The Tg values decreased when the content of acrylate monomers in the copolymer increased, and Tg values of the synthesized copolymer were in the range 66–102 °C. Instead of using n‐butyl acrylate monomer in the copolymerization, 2‐ethylhexyl acrylate copolymerization with styrene resulted in insignificant changes in the particle sizes but there were significant decreases in Tg values. In this study, the monodisperse particles can be obtained by monitoring the appropriate conditions regarding PVP K‐30 (2–8 wt%), ethanol/water (90/10 wt%), the reaction temperature (70 °C) and the agitation rate (100 rpm). © 2000 Society of Chemical Industry  相似文献   

3.
A polystyrene (PS)/poly(butyl acrylate) (PBA) composite emulsion was produced by seeded emulsion polymerization of butyl acrylate (BA) with PS seed particles which were prepared by emulsifier‐free polymerization of styrene with potassium persulfate (KPS) under a nitrogen atmosphere at 70°C for 24 h with stirring at 60 rpm and swelled with the BA monomer in an ethanol/water medium. The structure of the PS/PBA composite particles was confirmed by the presence of the characteristic absorption band attributed to PS and PBA from FTIR spectra. The particles for pure PS and PS/PBA with a low content of the BA monomer were almost spherical and regular. As the BA monomer content was increased, the particle size of the PS/PBA composite particles became larger, and more golf ball‐like particles were produced. The surface morphology of the PS/PBA composite particles was investigated by AFM and SEM. The Tg's attributed to PS and PBA in the PS/PBA composite particles were found at 110 and ?49°C, respectively. The thermal degradation of the pure PS and PS/PBA composite particles occurred in one and two steps, respectively. With an increasing amount of PBA, the initial thermal decomposition temperature increased. On the contrary the residual weight at 450°C decreased with an increasing amount of PBA. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 595–601, 2003  相似文献   

4.
5.
Mini‐emulsion polymerization of poly[styrene‐co‐(butyl acrylate)] encapsulating various contents of Cloisite 30B was performed. The kinetic behaviours of mini‐emulsions were investigated using the gravimetric method and the effect of nanoclay content on the polymerization rate was investigated. The average number of radicals per particle was estimated by calculating the number of particles. The results showed that by increasing the nanoclay content, the average diameter of polymer particles increased. Studies of the polymerization rate indicated that the increase in particle size provided a greater average number of reactive radicals per polymer particle, which increased from 0.0520 for the neat copolymer to 0.2462 for the nanocomposite containing 5.3 wt% encapsulated nanoclay. This study also confirmed our previous claim about the role of sodium dodecylsulfate (SDS) molecules in the exfoliation of nanoclay platelets. On increasing the clay content, fewer SDS molecules will be available on particle surfaces resulting in larger particles at the end of the reaction. Copyright © 2011 Society of Chemical Industry  相似文献   

6.
The design of a semicontinuous emulsion polymerization process, primarily based on theoretical calculations, has been carried out with the objective of achieving overall independent control over the latex particle size, the monodispersity in the particle size distribution, the homogeneous copolymer composition, the concentration of functional groups (e.g., carboxyl groups), and the glass‐transition temperature with n‐butyl methacrylate/n‐butyl acrylate/methacrylic acid as a model system. The surfactant coverage on the latex particles is very important for maintaining a constant particle number throughout the feed process, and this results in the formation of monodisperse latex particles. A model has been set up to calculate the surfactant coverage from the monomer feed rate, surfactant feed rate, desired solid content, and particle size. This model also leads to an equation correlating the polymerization rate to the instantaneous conversion of the monomer or comonomer mixture. This equation can be used to determine the maximum polymerization rate, only below or at which monomer‐starved conditions can be achieved. The maximum polymerization rate provides guidance for selecting the monomer feed rate in the semicontinuous emulsion polymerization process. The glass‐transition temperature of the resulting carboxylated poly(n‐butyl methacrylate‐con‐butyl acrylate) copolymer can be adjusted through variations in the compositions of the copolymers with the linear Pochan equation. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 30–41, 2003  相似文献   

7.
Acrylic emulsion pressure‐sensitive adhesives (PSAs) were synthesized by the copolymerization of n‐butyl acrylate with various levels of 2‐ethyl hexyl acrylate (2EHA) and a small constant amount of acrylic acid. The effect of varying the n‐butyl acrylate/2EHA monomer composition on the kinetic behavior of the polymerization and the characteristics of the copolymers prepared in a batch process were investigated. The results showed that increasing the amount of 2EHA in the monomer caused the polymerization rate and the glass‐transition temperature of the acrylic copolymers to decrease. Increasing the amount of 2EHA caused the gel content of the copolymers to decrease, reaching a minimum at 50 wt %; thereafter, the gel content increased at higher 2EHA levels. For the acrylic emulsion, the peel‐fracture energy of the PSAs decreased as the amount of 2EHA in the monomer was increased up to 50 wt %. At higher 2EHA levels, the peel‐fracture energy was relatively constant. Interestingly, a synergistic effect of increased shear resistance at 25 wt % 2EHA was observed without a significant trade‐off in terms of the peel and tack properties. This behavior was attributed to a good interconnection between the microgels and the free polymer chains inside the contacting particles in the adhesive film. Cooperation between various levels of 2EHA in the copolymer structure simultaneously changed the crosslink molecular weight (Mc) of the microgels and the entanglement molecular weight (Me) of the free chains in the adhesive network morphology. The adhesive performance of the PSAs was found to be correlated with their Mc/Me values as the 2EHA proportion was varied. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
Two polyisoprene‐block‐poly(tert‐butyl acrylate) (PI‐b‐PtBA) samples and a poly(tert‐butyl acrylate) (PtBA) homopolymer (hPtBA) were prepared by anionic polymerization and characterized by light scattering, size exclusion chromatography, and NMR. The tert‐butyl groups were removed from one of the diblocks to yield amphiphilic polyisoprene‐block‐poly(acrylic acid) (PI‐b‐PAA). PI‐b‐PAA was then used as the surfactant to disperse dichloromethane containing PI‐b‐PtBA and hPtBA at different weight ratios as oil droplets in water. Solid microspheres containing segregated polyisoprene (PI) and PtBA/hPtBA domains were obtained after dichloromethane evaporation. Permanent microspheres were obtained after PI domain crosslinking with sulfur monochloride. Porous microspheres were produced after the hydrolysis of PtBA and the extraction of the homopoly(acrylic acid) chains. The shape and connectivity of the poly(acrylic acid)‐lined pores were tuned by changes in the PtBA/hPtBA content in the precursor microspheres. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2785–2793, 2003  相似文献   

9.
以苯乙烯(St)、甲基丙烯酸甲酯(MMA)、丙烯酸-2-乙基己酯(2-EHA)、丙烯酸-2-羟基乙酯(HEA)和丙烯酸(AA)为反应单体,利用天然松香乳液作为改性剂,通过乳液聚合的方式制备了松香-苯丙复合乳液。研究了乳化剂用量、引发剂用量、松香乳液用量和单体配比对乳液性能的影响。并通过TGA、DLS、TEM对所制备的复合乳液进行了表征。结果表明:当乳化剂用量为单体质量的5%、引发剂用量为单体质量的0.8%、松香乳液用量为单体质量的30%、m(硬单体)∶m(软单体)=2.5∶1时,制得的乳液呈白色泛蓝光,粒径为131 nm。成膜后,漆膜光滑透明,硬度(1H)、耐水性(接触角97.05°)和附着力(1级)等性能良好。  相似文献   

10.
Ultrasonically initiated emulsion polymerization of n‐butyl acrylate (BA) without added initiator has been studied. The experimental results show that high conversion of BA can be reached in a short time by employing an ultrasonic irradiation technique with a high purge rate of N2. The viscosity average molecular weight of poly(n‐butyl acrylate) (PBA) obtained reaches 5.24 × 106 g mol?1. The ultrasonically initiated emulsion polymerization is dynamic and complicated, with polymerization of monomer and degradation of polymer occurring simultaneously. An increase in ultrasound intensity leads to an increase in polymerization rate in the range of cavitation threshold and cavitation peak values. Lower monomer concentration favours enhancement of the polymerization rate. 1H NMR, 13C NMR and FTIR spectroscopies reveal that there are some branches and slight crosslinking, and also carboxyl groups in PBA. Ultrasonically initiated emulsion polymerization offers a new route for the preparation of nanosized latex particles; the particle size of PBA prepared is around 50–200 nm as measured by transmission electron microscopy. © 2001 Society of Chemical Industry  相似文献   

11.
The free‐radical polymerization of alkenyl‐terminated polyurethane dispersions with styrene and n‐butyl acrylate was performed to obtain a series of stable polyurethane–poly(n‐butyl acrylate‐co‐styrene) (PUA) hybrid emulsions. The core–shell structure of the emulsions was observed by transmission electron microscopy, and the microstructure was studied by 1H‐NMR and Fourier transform infrared spectroscopy. The effects of the poly(propylene glycol)s (number‐average molecular weights = 1000, 1500, and 2000 Da) and the mass ratios of polyurethane to poly(n‐butyl acrylate‐co‐styrene) (PBS; 50/50, 40/60, 30/70, 20/80, and 10/90) on the structure, morphology, and properties of the PUAs were investigated. The average particle size and water absorption values of the PUAs increased with increasing of PBS content. However, the surface tension decreased from 34.61 to 30.29 mN/m. PUA‐2, with a bimodal distribution, showed Newtonian liquid behaviors, and PUA‐3 showed a great thermal stability, fast drying characteristics, and excellent adhesion to packaging films. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43763.  相似文献   

12.
Heterogeneous latexes were prepared by a two‐stage seeded emulsion polymerization process under monomer starved conditions at 80 °C using potassium persulfate as the initiator and sodium dodecyl sulfate as the emulsifier. Poly(butyl acrylate) latexes were used as seeds. The second‐stage polymer was poly(styrene‐co‐methyl methacrylate). By varying the amount of methyl methacrylate (MMA) in the second‐stage copolymer, the polarity of the copolymer phase could be controlled. It was found that the latex particles displayed different morphologies depending on the monomer ratio. The amount of MMA had a significant effect on the evolution of morphology. The morphologies were observed by transmission electron microscopy. In addition, the evolution of the particle morphology was predicted by the mathmatical model for cluster migration. The model gave the same trends as the experimental results. © 2002 Society of Chemical Industry  相似文献   

13.
Role of fluorocarbon surfactant in the preparation of polytetrafluoroethylene‐modified polyacrylate emulsion is investigated. The fluorocarbon surfactant has an efficient preemulsification to polytetrafluoroethylene (PTFE) powder. It enables PTFE powder to be introduced into the copolymer of n‐butyl acrylate, n‐methyl methacrylate, n‐styrene, and α‐methacrylic acid. Thereby, stable PTFE‐modified polyacrylate emulsion can be formed. The effects of fluorocarbon surfactant on the surface tension, particle size and particle size distribution of the emulsion, as well as the relation between fluorocarbon surfactant and the amount of PTFE powder are fully investigated. The particle size and the surface tension of emulsion strongly depend on the fluorocarbon surfactant concentration in the reaction system. The particle size distribution becomes narrower and the stability of the emulsion is improved with the increasing of the fluorocarbon surfactant concentration. According to the experiments, a possible mechanism of fluorocarbon surfactant in polymerization is proposed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

14.
Macro reversible addition–fragmentation chain transfer (RAFT) agents, i.e. RAFT polystyrene (RAFT‐PS) and RAFT poly(n‐butyl acrylate) (RAFT‐PBA), were mixed. Polymer‐dispersed liquid crystals (PDLCs) were prepared using the mixture together with methyl acrylate and liquid crystal E7. The electro‐optical properties of the PDLCs obtained were investigated. The results showed that the advantages of the electro‐optical properties of RAFT‐PS‐ and RAFT‐PBA‐dependent PDLCs could be combined in RAFT agent mixture‐dependent PDLCs. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
A novel polymerization procedure, the concentrated‐emulsion graft polymerization of styrene monomer with poly(butyl acrylate) seed, was proposed for the production of a self‐compatibility macromolecule alloy. The effects of the butyl acrylate content, sodium dodecyl sulfate concentration, and polymerization temperature on the graft ratio were investigated. Scanning electron microscopy, transmission electron microscopy, and impact strength were used to characterize the microstructure and mechanical performance of the self‐compatibility macromolecule alloy. The results showed that increasing the butyl acrylate content, reducing the sodium dodecyl sulfate concentration, and improving the polymerization temperature all favored an increased graft ratio, which resulted in increased impact strength of the self‐compatibility macromolecule alloy. Therefore, the concentrated‐emulsion polymerization method is particularly suitable for seed‐graft polymerization. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2915–2920, 2002; DOI 10.1002/app.10288  相似文献   

16.
A series of methyl acrylate‐acrylic acid amphiphilic triblock copolymers (PMA‐PAA‐PMA) were prepared by solution polymerization using S,S′‐bis (α,α‐dimethy1acetic acid) trithiocarbonate (BDAT) as a reversible addition fragmentation chain transfer (RAFT) agent and methyl acrylate (MA) as the first monomer. The triblock copolymers and their common MA homopolymer precursors were characterized in terms of their compositions, molecular weights and behavior at the air–water interface using 1H‐NMR spectroscopy, thermogravimetric analysis, gel permeation chromatography, surface tension, transmission electron microscopy (TEM) and dynamic light scattering respectively. The results indicated that PMA‐PAA‐PMA was successfully synthesized through RAFT polymerization. The polydispersity index (PDI) decreased when the molar ratio [n(MA)/n(AA)] increased, the lowest PDI was obtained at 5.23 wt% RAFT and the molecular weights were consistent with the theoretical value as the RAFT agent percentage varied. The polymer neutralized by sodium hydroxide solution shows a low critical micelle concentration (CMC), which was <10?2 mol L?1 in water. The Amin values increased and showed a maximum with decreased AA chain length. TEM showed that the neutralized polymer formed a special vesicle structure with large pore structure which led to a low CMC and surface tension of water.  相似文献   

17.
Block copolymers, polystyrene‐b‐poly(styrene‐co‐maleic anhydride), have been prepared by reversible addition‐fragmentation chain transfer (RAFT) polymerization technique using three different approaches: 1‐phenylethyl phenyldithioacetate (PEPDTA) directly as RAFT agent, mediated polystyrene (PS) block as the macromolecular PS‐RAFT agent and mediated poly(styrene‐maleic anhydride) (SMA) block with alternating sequence as the macromolecular SMA‐RAFT agent. Copolymers synthesized in the one‐step method using PEPDTA as RAFT agent possess one PS block and one SMA block with gradient structure. When the macromolecular RAFT agents are employed, copolymers with one PS block and one alternating SMA block can be produced. However, block copolymers with narrow molecular weight distribution (MWD) can only be obtained using the PS‐RAFT agent. The MWD deviates considerably from the typical RAFT polymerization system when the SMA is used as the RAFT agent. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Emulsion graft copolymerization of poly(hydrogenmethylsiloxane) (PHMS) and butyl acrylate (BA) in the presence of functional comonomer N‐hydroxyl‐methyl acrylamide (NMA) was conducted by batch emulsion copolymerization to modify the properties of polysiloxane. Morphology of graft copolymer particles was characterized by transmission electron microscopy. The effect of polymerization method, PHMS content, initiator concentration, and NMA content on stability of emulsion, morphology, size of particle, and rheological properties were investigated. It has been found that stability of emulsion is better by semicontinuous emulsion polymerization than that of batch emulsion polymerization and it increased with increasing PHMS‐NMA concentration. Increasing PHMS concentration and NMA concentration, the particle size and the viscosities increase. The property of resistance to electrolytes of graft copolymer emulsions and swelling property of film were also discussed. Results showed PHMS‐g‐P [butylacrylate (BA)‐N‐hydroxyl‐methyl acrylamide (NMA)] graft copolymer emulsion has good resistance to electrolytes and the water absorption of its film increases with increasing BA‐NMA content grafted onto PHMS. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2209–2217, 1999  相似文献   

19.
New polymer colloids based on the saccharide monomer, using of 3‐O‐methacryloyl‐1,2:5,6‐di‐O‐isopropylidene‐α‐D ‐glucofuranose (3‐MDG), were prepared by semicontinuous emulsion polymerization, a widely used industrial process. The copolymerization of 3‐MDG and butyl acrylate (BA), by the monomer‐addition technique, at 70°C, using sodium persulfate (Na2S2O8) as an initiator, was investigated. The influence of some reaction parameters, such as the type and concentration of the surfactants as well as the monomer addition rate (Rm) on the polymerization rate (Rp), the colloidal properties, and the stability of the latexes, was studied. It was found that under starved‐feed conditions the polymerization rate and the particle size (D) increased with an increasing rate of monomer addition. The weight‐average molecular weight (M w) also increased by enhancing Rm and a narrower molecular weight distribution was obtained. Furthermore, the type and the concentration of the surfactants strongly influenced the particle size and its distribution. The effect of the seed stage on the particle size and its distribution was also investigated. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2091–2102, 2003  相似文献   

20.
Multistage emulsion polymerization was used to prepare ultra‐high molecular weight foam regulator of low cost, with methyl methacrylate (MMA), butyl acrylate (BA), styrene (St) as main raw materials. Ubbelohde viscometer, dynamic light scattering, infrared and raman spectra, TEM, DSC, TGA, and GPC were all used to characterize constituent and structure, morphology, and molecular weight. As a result, when the ratio of soft monomer (BA) and hard monomer (St + MMA) is 1:3, MMA:St = 4:1, potassium persulfate (KPS): 0.15%, sodium hydrogen sulfite (SHS): 0.05%, azodiisobutyronitrile (AIBN): 0.15%, divinyl benzene (DVB): 0.3%, the final product terpolymer has obvious core‐shell structure and ultra‐high molecular weight (Mw = 1,400,000). This kind of foam regulator showed improvements in the melt strength, prevention of bubble coalescence and reduction on cost when compared with the traditional. Finally, the coefficients of poly (methyl methacrylate‐butyl acrylate‐styrene) terpolymer's Mark‐Houwink equation were calculated with tetrahydrofuran (THF) solvent at 25 °C. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44479.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号