首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A new symmetrically substituted cationic monomer bis[3‐(diethoxyphosphoryl)propyl]diallylammonium chloride has been synthesized and cyclopolymerized to give the corresponding cationic polyelectrolyte (+) (CPE) bearing two identical (diethoxyphosphoryl)propyl penedents on the pyrrolidinium repeating units. The hydrolysis of the phosphonate ester in (+) (CPE) gave a pH‐responsive cationic polyacid (+) (CPA) bearing the motifs of a tetrabasic acid. The (+) (CPA) under pH‐induced transformation was converted into a water‐insoluble polyzwitterion acid (±) (PZA) or water‐soluble polyzwitterion/monoanion (± ?) (PZMAN) or polyzwitterion/dianion (± =) (PZDAN) or polyzwitterion/trianion (± ≡) (PZTAN), all having identical degree of polymerization. The interesting solubility and viscosity behaviors of the polymers have been investigated in some detail. The apparent protonation constants of the anionic centers in (± ≡) (PZTAN) and its corresponding monomer (± ≡) (ZTAN) have been determined. Evaluation of antiscaling properties of the PZA using supersaturated solutions of CaSO4 revealed ≈100% scale inhibition efficiency at a meager concentration of 10 ppm for a duration over 71 h at 40°C. The PZA has the potential to be an effective antiscalant in Reverse Osmosis plants. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40615.  相似文献   

2.
The zwitterionic monomer, 3‐(N,N‐diallyl,N‐carboethoxymethylammonio)propanesulfonate, on cocyclopolymerization with sulfur dioxide in DMSO using azoisobutyronitrile as the initiator afforded the polyzwitterion (PZ) copolymer in excellent yields. The PZ on acidic hydrolysis of the ester groups led to the corresponding polyzwitterionic acid (PZA). The pH‐responsive PZA on treatment with sodium hydroxide gave the new poly(eletrolyte‐zwitterion) (PEZ). The solubility, viscosity behaviors, and solution properties of the salt‐tolerant PZ, PZA, and PEZ were studied in detail. Like common PZs, PZ was found to be insoluble in salt‐free but soluble in salt‐added water. The apparent basicity constants of the carboxyl group in PEZ have been determined. As the name implies, the PEZ possesses dual type of structural feature common to both conventional anionic polyelectrolytes and PZs, and its aqueous solution behavior is found to be similar to that observed for a typical alternating anionic‐zwitterionic copolymer. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
An in situ–generated tetrafunctional samarium enolate from the reduction of 1,1,1,1‐tetra(2‐bromoisobutyryloxymethyl)methane with divalent samarium complexes [Sm(PPh2)2 and SmI2] in tetrahydrofuran has proven to initiate the ring‐opening polymerization of ?‐caprolactone (CL) giving star‐shaped aliphatic polyesters. The polymerization proceeded with quantitative conversions at room temperature in 2 h and exhibited good controllability of the molecular weight of polymer. The resulting four‐armed poly(?‐caprolactone) (PCL) was fractionated, and the dilute‐solution properties of the fractions were studied in tetrahydrofuran and toluene at 30°C. The Mark–Houwink relations for these solvents were [η] = 2.73 × 10?2Mw0.74 and [η] = 1.97 × 10?2Mw0.75, respectively. In addition, the unperturbed dimensions of the star‐shaped PCL systems were also evaluated, and a significant solvent effect was observed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 175–182, 2006  相似文献   

4.
The manipulation of surface wettability has been regarded as an efficient strategy to improve the membrane performances. Herein, the counterion‐switched reversibly hydrophilic and hydrophobic surface of TiO2‐loaded polyelectrolyte membrane are prepared by layer‐by‐layer assembly of poly(sodium 4‐styrene sulfonate) (PSS) and poly(diallydimethyl‐ammoniumchloride (PDDA) containing TiO2@PDDA nanoparticles (NPs) on the hydrolyzed polyacrylonitrile (PAN) substrate membrane. The obtained polyelectrolyte multilayer (PEM) membranes [PEM‐TiO2]4.5+X? (X? = Cl?, PFO? [perfluorooctanoate] etc.) show different hydrophilicity and hydrophobicity with various counterions. The integration of TiO2 NPs obviously improves the wettability and nanofiltration (NF) performance of PEM membrane for (non)aqueous system of dyes (crystal violet, eriochrome black T) with a high recyclability. The highly hydrophilic [PEM‐TiO2]4.5+Cl? (water contact angle [WCA]: 13.2 ± 1.8°) and hydrophobic [PEM‐TiO2]4.5+PFO? (WCA: 115.4 ± 2.3°) can be reversibly switched via counterion exchange between Cl? and PFO?, verifying the surface with a reversible hydrophilic–hydrophobic transformation. For such membranes, the morphology, wettability, and NF performance rely on the loading of TiO2@PDDA NPs and surface counterion. Meanwhile, the motion and interaction of water or ethanol in the hydrophilic or hydrophobic membrane are revealed by low‐field nuclear magnetic resonance. This work provides a facile and rapid approach to fabricate smart and tunable wetting surface for potential utilization in (non)aqueous NF separation.  相似文献   

5.
The radical‐initiated terpolymerization of 3,4‐dihydro‐2H‐pyran (DHP), maleic anhydride (MA), and vinyl acetate (VA), which were used as a donor–acceptor–donor system, was carried out in methyl ethyl ketone in the presence of 2,2′‐azobisisobutyronitrile as an initiator at 65°C in a nitrogen atmosphere. The synthesis and characterization of binary and ternary copolymers, some kinetic parameters of terpolymerization, the terpolymer‐composition/thermal‐behavior relationship, and the antitumor activity of the synthesized polymers were examined. The polymerization of the DHP–MA–VA monomer system predominantly proceeded by the alternating terpolymerization mechanism. The in vitro cytotoxicities of poly(3,4‐dihydro‐2H‐pyran‐alt‐maleic anhydride) [poly(DHP‐alt‐MA)] and poly(3,4‐dihydro‐2H‐pyran‐co‐maleic anhydride‐co‐vinyl acetate) [poly(DHP‐co‐MA‐co‐VA)] were evaluated with Raji cells (human Burkitt lymphoma cell line). The antitumor activity of the prepared anion‐active poly(DHP‐alt‐MA) and poly(DHP‐co‐MA‐co‐VA) polymers were studied with methyl–thiazol–tetrazolium testing, and the 50% cytotoxic dose was calculated. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2352–2359, 2005  相似文献   

6.
The cationic monomer N,N‐diallyl‐3‐(diethylphosphonato)propylammonium chloride was cyclo‐copolymerized with sulfur dioxide in dimethylsulfoxide using azoisobutyronitrile as initiator to afford a cationic polyelectrolyte (CPE) having a (diethylphosphonato)propyl pendent moiety. The CPE on acidic hydrolysis of the diester groups gave pH‐responsive polyzwitterionic acid (PZA) which on treatment with one and two equivalents of NaOH gave zwitterionic/anionic polyelectrolyte (ZAPE) and dianionic polyelectrolyte (DAPE), respectively. The solution properties of CPE, PZA, ZAPE and DAPE were investigated in detail using a viscometric technique. For comparison, the solution properties of the polymers were correlated with those of the structurally similar polyzwitterion prepared from copolymerization of the corresponding zwitterionic monomer ethyl‐3‐(N,N‐diallylammonio)propanephosphonate and sulfur dioxide. Evaluation of antiscaling properties using concentrated brine solutions revealed that DAPE at a meagre concentration of 10 ppm is very effective in inhibiting the formation of calcium sulfate scale, and as such can be used effectively as an antiscalant in reverse osmosis plants. © 2013 Society of Chemical Industry  相似文献   

7.
The reaction of 4-(diallylammonio)butanoate, H3PO3 and PCl3 in CH3SO3H created water-insoluble 4-diallylamino-1-hydroxybutylidene-1,1-bisphosphonic acid I, a novel monomer that contained residues of the osteoporosis drug alendronic acid. Monomer (±) I, a zwitterionic tetraprotic acid, in the presence of 2 equivs. NaOH(aq) and the initiator ammonium persulfate, underwent cyclopolymerization to yield water-soluble poly(zwitterion–dianion) (± =) II. Under the influence of pH, II was equilibrated to water-soluble poly(zwitterion–trianion) (± ≡) III, polytetraanion (= =) IV, poly(zwitterion–anion) (± −) V, cationic polyelectrolyte (+) VI and water-insoluble polyzwitterion (±) VII. The solution properties of backbone charges were investigated, and protonation constants of several centers in IV were determined. Polymers that contained residues of alendronic acid should have applications in various fields, including the field of medicine.  相似文献   

8.
Poly(N‐isopropylacrylamide‐co‐acrylic acid) (P(NIPAM‐co‐AA)) microspheres with a high copolymerized AA content were fabricated using rapid membrane emulsification technique. The uniform size, good hydrophilicity, and thermo sensitivity of the microspheres were favorable for trypsin immobilization. Trypsin molecules were immobilized onto the microspheres surfaces by covalent attachment. The effects of various parameters such as immobilization pH value, enzyme concentration, concentration of buffer solution, and immobilization time on protein loading amount and enzyme activity were systematically investigated. Under the optimum conditions, the protein loading was 493 ± 20 mg g?1 and the activity yield of immobilized trypsin was 155% ± 3%. The maximum activity (Vmax) and Michaelis constant (Km) of immobilized enzyme were found to be 0.74 μM s?1 and 0.54 mM, respectively. The immobilized trypsin showed better thermal and storage stability than the free trypsin. The enzyme‐immobilized microspheres with high protein loading amount still can show a thermo reversible phase transition behavior. The research could provide a strategy to immobilize enzyme for application in proteomics. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43343.  相似文献   

9.
A new conjugated light‐emitting AB copolymer containing alternating fluorene and naphthalene units, poly{(9,9‐di‐n‐octylfluorenediyl vinylene)‐alt‐[1,5‐(2,6‐dioctyloxy)naphthalene vinylene]} (PFV‐alt‐PNV), was synthesized via Horner‐Emmons polymerization. The polymer is completely soluble in common organic solvents and exhibits good thermal stability up to 400 °C. UV‐visible, fluorescence and photoluminescence measurements of the copolymer show peak maxima at 427, 500 and 526 nm, respectively. A light‐emitting device containing the new polymer was fabricated using a simple indium tin oxide configuration: (ITO)/PEDOT:PSS/PFV‐alt‐PNV/Al. Measurements of current versus electric field were carried out, with an onset of light emission occurring at 2.5 V. The electroluminescence brightness was observed to reach a maximum of 5000 cd m?2. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
Poly(aniline‐co‐o‐aminophenol) (PANOA) was synthesized via electrochemical copolymerization of o‐aminophenol and aniline using p‐toluene sulfonate (TSA?) as the counterion. The redox transformation of PANOA is accompanied by the exchange of anions into and out of the copolymer, and the feasibility of perchlorate (ClO4?) removal via an electrically switched ion exchange process was evaluated in this study. The results of electrochemical quartz crystal microbalance (EQCM), electrochemical impedance spectroscopy (EIS), and Fourier transform infrared spectroscopy (FTIR) demonstrated the successful release of TSA? upon reduction and uptake of ClO4? upon reoxidation of the copolymer. Also, in this work, the possible ion‐exchange mechanism of PANOA was proposed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41895.  相似文献   

11.
Commercial, water‐soluble poly(ethylene‐alt‐maleic anhydride), P(E‐alt‐MAn), was quantitatively hydrolyzed by 0.2M NaOH to yield poly(ethylene‐alt‐maleic acid), P(E‐alt‐MAc). The polymer structure is confirmed by FT‐IR spectroscopy. As the pH increases, metal ion affinity increases because the majority of the functional groups are present as carboxylate anions, which can form more stable complexes at a higher pH. By increasing the filtration factor, Z, metal ion affinity does not significantly decrease, which means that the ligand–metal interaction is strong and cannot be destroyed by washing with water at the filtration cell's pH. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2057–2061, 2006  相似文献   

12.
A series of free‐standing hybrid anion‐exchange membranes were prepared by blending brominated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (BPPO) with poly(vinylbenzyl chloride‐co‐γ‐methacryloxypropyl trimethoxy silane) (poly(VBC‐co‐γ‐MPS)). Apart from a good compatibility between organic and inorganic phases, the hybrid membranes had a water uptake of 32.4–51.8%, tensile strength around 30 MPa, and Td temperature at 5% weight loss around 243–261°C. As compared with the membrane prepared from poly (VBC‐co‐γ‐MPS), the hybrid membranes exhibited much better flexibility, and larger ion‐exchange capacity (2.19–2.27 mmol g?1) and hydroxyl (OH?) conductivity (0.0067–0.012 S cm?1). In particular, the hybrid membranes with 60–75 wt % BPPO had the optimum water uptake, miscibility between components, and OH? conductivity, and were promising for application in fuel cells. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
tert‐Butyl vinyl ether (tBVE) was polymerized with the catalyst dimethyl[rac‐ethylenebis(indenyl)] zirconium (ansa‐zirconocene) with tri(pentafluorophenyl) borane [B(C6F5)3] as a cocatalyst. The effects of various polymerization conditions, such as the polymerization time, type of polymerization solvent, polymerization temperature, and catalyst concentration, on the conversion of tBVE into poly(tBVE), its molecular weight and molecular weight distribution, and its stereoregularity were investigated. The maximum conversion of tBVE into poly(tBVE) was over 90% at a polymerization temperature of ?30°C with an ansa‐zirconocene and B(C6F5)3 concentration of 3.0 × 10?7 mol/mol of tBVE, respectively. The number‐average molecular weights of poly(tBVE) ranged from approximately 14,000 to 20,000, with a lower polydispersity index (weight‐average molecular weight/number‐average molecular weight) ranging from 1.48 to 1.77, at all polymerization temperatures. The number‐average molecular weight of poly(tBVE) increased with decreases in the polymerization temperature and catalyst concentration. The mm triad sequence fraction of poly(tBVE) polymerized with ansa‐zirconocene/B(C6F5)3 at ?30°C was much higher than that of poly(tBVE) polymerized with the B(C6F5)3 catalyst at ?30°C, and this indicated that the ansa‐zirconocene/B(C6F5)3 catalyst system affected the isospecific polymerization of tBVE. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
A novel aliphatic polycarbonate, poly[(propylene oxide)‐co‐(carbon dioxide)‐co‐(γ‐butyrolactone)] [P(PO? CO2? GBL)], was synthesized by the copolymerization of carbon dioxide, propylene oxide (PO) and γ‐butyrolactone (GBL). The resulting copolymers were determined by FTIR and NMR spectral analysis with viscosity‐average molecular weights (Mv) from 50 000 to 120 000 g mol?1. According to elemental analysis, the calculated data of elemental contents in P(PO? CO2? GBL)44 were close to the found data. The result showed that GBL was inserted into the backbone of poly[(propylene oxide)‐co‐(carbon dioxide)] successfully. GBL offered an ester structural unit that gave the copolymer better degradability. The correlations between reaction conditions and properties were studied. When GBL content increased, the Mv and the glass transition temperature (Tg) of the copolymers improved relative to an identical copolymer without GBL. Prolonging the reaction time of the copolymerization resulted in increases in Mv and Tg. P(PO? CO2? GBL) exhibited a high Tg above 40 °C. The rate of backbone degradation increased with increasing GBL content. Copyright © 2005 Society of Chemical Industry  相似文献   

15.
A novel, simple, soft, and fast microwave‐assisted hydrothermal method was used for the preparation of single‐crystal nanorods of hexagonal rhabdophane‐type La1?xSrxPO4?x/2·nH2O (x = 0 or 0.02) from commercially available La(NO3)3·6H2O, Sr(NO3)2, and H3PO4. The synthesis was conducted at 130°C for 20 min in a sealed‐vessel microwave reactor specifically designed for synthetic applications, and the resulting products were characterized using a wide battery of analytical techniques. Highly uniform, well‐shaped nanorods of LaPO4·nH2O and La0.98Sr0.02PO3.99·nH2O were readily obtained, with average length of 213 ± 41 nm and 102 ± 25 nm, average aspect ratio (ratio between length and diameter) of 21 ± 9 and 12 ± 5, and specific surface area of 45 ± 2 and 51 ± 1 m2/g, respectively. In both cases, the single‐crystal nanorods grew anisotropically along their c crystallographic‐axis direction. At 700°C, the hexagonal rhabdophane‐type phase has already transformed into the monoclinic monazite‐type structure, although the undoped and Sr‐doped nanorods retain their morphological features and specific surface area during calcination.  相似文献   

16.
A series of novel red‐emitting Ca8ZnLa1?xEux(PO4)7 phosphors were successfully synthesized using the high‐temperature solid‐state reaction method. The crystal structure, photoluminescence spectra, thermal stability, and quantum efficiency of the phosphors were investigated as a function of Eu3+ concentration. Detailed analysis of their structural properties revealed that all the phosphors could be assigned as whitlockite‐type β‐Ca3(PO4)2 structures. Both the PL emission spectra and decay curves suggest that emission intensity is largely dependent on Eu3+ concentration, with no quenching as the Eu3+ concentration approaches 100%. A dominant red emission band centered at 611 nm indicates that Eu3+ occupies a low symmetry sites within the Ca8ZnLa(PO4)7 host lattice, which was confirm by Judd‐Ofelt theory. Ca8ZnLa1?xEux(PO4)7 phosphors exhibited good color coordinates (0.6516, 0.3480), high color purity (~96.3%), and high quantum efficiency (~78%). Temperature‐dependent emission spectra showed that the phosphors possessed good thermal stability. A white light‐emitting diode (LED) device were fabricated by integrating a mixture of obtained phosphors, commercial green‐emitting and blue‐emitting phosphors into a near‐ultraviolet LED chip. The fabricated white LED device emits glaring white light with high color rendering index (83.9) and proper correlated color temperature (5570 K). These results demonstrate that the Ca8ZnLa1?xEux(PO4)7 phosphors are a promising candidate for solid‐state lighting.  相似文献   

17.
Structured latex particles with a slightly crosslinked poly(styrene‐n‐butyl acrylate) (PSB) core and a poly(styrene–methacrylate–vinyl triethoxide silane) (PSMV) shell were prepared by seed emulsion polymerization, and the latex particle structures were investigated with Fourier transform infrared, thermogravimetric analysis, differential scanning calorimetry, transmission electron microscopy, and dynamic light scattering. The films that were formed from the structured core (PSB)–shell (PSMV) particles under ambient conditions had good water repellency and good tensile strength in comparison with films from structured core (PSB)–shell [poly(styrene–methyl methyacrylate)] latex particles; this was attributed to the self‐crosslinking of CH2?CH? Si(OCH2CH3)3 in the outer shell structure. The relationship between the particle structure and the film properties was also investigated in this work. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1824–1830, 2006  相似文献   

18.
Na‐ion conducting Na1+x[SnxGe2?x(PO4)3] (x = 0, 0.25, 0.5, and 0.75 mol%) glass samples with NASICON‐type phase were synthesized by the melt quenching method and glass‐ceramics were formed by heat treating the precursor glasses at their crystallization temperatures. XRD traces exhibit formation of most stable crystalline phase NaGe2(PO4)3 (ICSD‐164019) with trigonal structure. Structural illustration of sodium germanium phosphate [NaGe2(PO4)3] displays that each germanium is surrounded by 6 oxygen atom showing octahedral symmetry (GeO6) and phosphorous with 4 oxygen atoms showing tetrahedral symmetry (PO4). The highest bulk Na+ ion conductivities and lowest activation energy for conduction were achieved to be 8.39 × 10?05 S/cm and 0.52 eV for the optimum substitution levels (x = 0.5 mol%, Na1.5[Sn0.5Ge1.5(PO4)3]) of tetrahedral Ge4+ ions by Sn4+ on Na–Ge–P network. CV studies of the best conducting Na1.5[Sn0.5Ge1.5(PO4)3] glass‐ceramic electrolyte possesses a wide electrochemical window of 6 V. The structural and EIS studies of these glass‐ceramic electrolyte samples were monitored in light of the substitution of Ge by its larger homologue Sn.  相似文献   

19.
The antimicrobial polymer/polymer macrocomplexes were synthesized by radical alternating copolymerization of N‐vinyl‐2‐pyrrolidone with maleic anhydride [poly(VP‐alt‐MA)] with 2,2′‐azobis‐isobutyronitrile as an initiator at 65°C in dioxane solutions under nitrogen atmosphere, and interaction of prepared copolymer with poly(ethylene imine) (PEI) in aqueous solutions. The susceptibility of some Gram‐negative (Salmonella enteritidis and Escherichia coli) and Gram‐positive (Staphylococcus aureus and Listeria monocytogenes) bacteria to the alternating copolymer and its PEI macrocomplexes with different compositions in microbiological medium was studied using pour‐plate technique. All the studied polymers, containing biologically active moieties in the form of ionized cyclic amide, and macrobranched aliphatic amine groups and acid/amine complexed fragments, were more effective against L. monocytogenes than those for Gram‐positive S. aureus bacterium. This fact was explained by different surface layer structural architectures of biomacromolecules of tested bacteria. The resulting polymeric antimicrobial materials are expected to be used in various areas of medicine and food industry. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5841–5847, 2006  相似文献   

20.
Microcalorimetry and cloud point extrapolation indicate a lower critical solution temperature of 216 °C for poly(N,N‐dimethylacrylamide) (PDMA). This is the highest phase‐transition temperature in the poly(N,N‐dialkylacrylamide) series. Cloud points were recorded from electrolyte solutions made of Na3PO4, CaCO3, (NH4)2SO4 and KOH. These measurements were realized below and beyond the boiling point of water. The hydrolytic properties of PDMA in superheated water (200 °C) were examined and verified using 1H NMR analysis. The knowledge of the phase‐transition temperature of pure PDMA is of interest, as it is often a constituent of smart copolymers, to adjust the responsiveness to a desired temperature threshold. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号