首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface modification of cellulose nanocrystals   总被引:2,自引:0,他引:2  
In order to improve the dispersibility of cellulose nanocrystal (CNC) particles, three different grafted reactions of acetylation, hydroxyethylation and hydroxypropylation were introduced to modify the CNC surface. The main advantages of these methods were the simple and easily controlled reaction conditions, and the dispersibility of the resulting products was distinctly improved. The properties of the modified CNC were characterized by means of Fourier transform infrared spectroscopy (FT-IR), 13C nuclear magnetic resonance (NMR), transmission electron microscopy (TEM) and thermogravimetric analyses (TGA). The results indicated that after desiccation, the modification products could be dispersed again in the proper solvents by ultrasonic treatments, and the diameter of their particles had no obvious changes. However, their thermal degradation behaviors were quite different. The initial decomposition temperature of the modified products via hydroxyethylation or hydroxypropylation was lower than that of modified products via acetylation. Translated from Acta Polymerica Sinica, 2006, (8): 982–987 [译自: 高分子学报]  相似文献   

2.
To improve dispersibility of silica nanoparticle in organic solvents, the grafting of poly(L ‐lactide) (PLLA) onto silica nanoparticle surface by ring‐opening polymerization of L‐lactide (LA) was investigated in the presence of an amidine base catalyst. The ring‐opening polymerization of LA successfully initiated in the presence of silica having amino groups (silica‐NH2) and an amidine base catalyst to give PLLA‐grafted silica, but not in the presence of untreated silica (silica‐OH). In the absence of the amidine base catalyst no ring‐opening polymerization of LA even in the presence of silica‐NH2 and no grafting of PLLA onto silica were observed. It became apparent that the amidine base catalyst acts as an effective catalyst for the ring‐opening graft polymerization of LA from the surface of silica‐NH2. In addition, it was found that the percentage of PLLA grafting onto silica could be controlled according to the reaction conditions. The average particle size of PLLA‐grafted silica was smaller than that of silica‐NH2. Therefore, it was considered that the aggregation structure of silica nanoparticles was considerably destroyed by grafting of PLLA onto the surface. The PLLA‐grafted silica gave a stable dispersion in polar solvents, which are good solvents for PLLA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Cellulose nanocrystals (CNCs) are a kind of sustainable nanoparticle from biomass, which are widely used as reinforcing filler and assembly building block for high-performance composites and function materials including biomaterial, optics, and so forth. Here, their unique advantages in material applications were reviewed based on their rod-like morphology, crystalline structure, dimension-related effects, and multi-level order structure. Then, we focused on the molecular engineering of CNCs, including the structure and physicochemical properties of their surface, along with surface modification methods and steric effects. We further discussed the performance-improvement and functionalization methods based on multi-component complex systems, together with the effects of surface molecular engineering on the performance and functions. Meanwhile, methods of optimizing orientation in uniaxial arrays were discussed along with those of enhancing photoluminescence efficiency via surface chemical modification and substance coordination. In the end, we prospected the design, development, and construction methods of new CNCs materials.  相似文献   

4.
3-Methacryloxypropyltrimethoxysilane (MEMO) was used to modify the surface of cellulose nanofibrils (CNF) to improve the interfacial adhesion between the hydrophilic CNF and the hydrophobic poly(lactic acid) (PLA). MEMO modified CNF (M-CNF) were characterized by means of Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), and atomic force microscope (AFM). Testing thin films with good transparency were obtained by casting the DMAC solutions of the composites onto glass plates and evaporating the solvent at 80°C. PLA/M-CNF composites were tested by tensile testing, scanning electron microscope (SEM), and AFM. The effect of MEMO and CNF on performance of PLA was investigated. The FTIR analysis successfully showed that coupling reaction has been successfully occurred and the hydroxyl groups of MEMO are strongly hydrogen bonded to that of CNF. The thermal stability of M-CNF was little decreased. The M-CNF kept their morphological integrity. The highest tensile strength of composites was obtained for PLA with 1.0% v/v MEMO and 1.0 wt % CNF. M-CNF disperse well and cross with each other in the PLA matrix. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
Surface modification of poly(lactic acid) (PLA) film surface by Ar-plasma was investigated by contact angle measurements and XPS in order to answer the following two questions. (1) Could the Ar-plasma modify the PLA film surfaces? (2) What chemical reactions occurred on the film surfaces during the Ar-plasma treatment? The Ar-plasma treatment did not lead to hydrophilic modification of the PLA film surface, but to degradation reactions of the PLA film. Poor modification may be due to instability of the carbon radicals formed from C—O bond scission in the PLA chains by the Ar-plasma.  相似文献   

6.
Hexa‐armed star‐shaped poly(ε‐caprolactone)‐block‐poly(L ‐lactide) (6sPCL‐b‐PLLA) with dipentaerythritol core were synthesized by a two‐step ring‐opening polymerization. GPC and 1H NMR data demonstrate that the polymerization courses are under control. The molecular weight of 6sPCLs and 6sPCL‐b‐PLLAs increases with increasing molar ratio of monomer to initiator, and the molecular weight distribution is in the range of 1.03–1.10. The investigation of the melting and crystallization demonstrated that the values of crystallization temperature (Tc), melting temperature (Tm), and the degree of crystallinity (Xc) of PLLA blocks are increased with the chain length increase of PLLA in the 6sPCL‐b‐PLLA copolymers. On the contrary, the crystallization of PCL blocks dominates when the chain length of PLLA is too short. According to the results of polarized optical micrographs, both the spherulitic growth rate (G) and the spherulitic morphology are affected by the macromolecular architecture and the length of the block chains. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
Kraft pulp fibers were used as substrates for the grafting of poly(ε‐caprolactone) (PCL) from available hydroxyl groups through ring‐opening polymerization, targeting three different chain lengths (degree of polymerization): 120, 240, and 480. In a paper‐making process, paper‐sheet biocomposites composed of grafted fibers and neat pulp fibers were prepared. The paper sheets possessed both the appearance and the tactility of ordinary paper sheets. Additionally, the sheets were homogenous, suggesting that PCL‐grafted fibers and neat fibers were compatible, as demonstrated by both Fourier transform infrared spectroscopy microscopy and through dye‐labeling of the PCL‐grafted fibers. Finally, it was shown that the paper‐sheet biocomposites could be hot‐pressed into laminate structures without the addition of any matrix polymer; the adhesive joint produced could even be stronger than the papers themselves. This apparent and sufficient adhesion between the layers was thought to be due to chain entanglements and/or co‐crystallization of adjacent grafted PCL chains within the different paper sheets. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42039.  相似文献   

8.
Cellulose nanocrystals (CNCs) organogels were first produced from aqueous dispersion through solvent exchange of CNCs to acetone via a simple sol‐gel process. After mixing the organogels with poly(propylene carbonate) (PPC) in dimethylformamide followed by solution casting, green nanocomposites were obtained with CNCs well dispersed in PPC polymer matrix which was confirmed by scanning electron microscopy observations. Differential scanning calorimeter analysis revealed that glass transition temperature of the nanocomposites was slightly increased from 34.0 to 37.4°C. Tensile tests indicated that both yield strength and Young's modulus of CNCs/PPC nanocomposites were doubled by adding 10 wt % CNCs. However, poor thermal stability of PPC occurred after incorporating with CNCs due to the thermo‐sensitive sulfate groups located on the surface of CNCs. Furthermore, PPC became more hydrophilic because of the inclusion of CNCs according to the water contact angle measurement. The enhanced mechanical and hydrophilic properties, coupled with the inherent superior biocompatibility and degradability, offered CNCs/PPC composites potential application in biomedical fields. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40832.  相似文献   

9.
Poly(L ‐lactic acid) (PLA) films are in use for various types of food packaging; however, a wider range of applications would be possible if the barrier properties of these films could be improved. To make such improvements, combinations of PLA with two nanofillers, laurate‐intercalated Mg‐Al layered double hydroxide (LDH‐C12) and a cationic organomodified montmorillonite (MMT) clay (Cloisite® 30B), were investigated. The dispersion of these fillers in PLA by melt processing was explored using two methods, either by mixing the nanofillers with PLA granulate immediately before extrusion or by preparation and subsequent dilution of PLA‐nanofiller masterbatches. After melt processing of these materials, PLA molecular weight, thermal stability, film transparency, morphology, and permeability characteristics were determined. Direct addition of LDH‐C12 drastically reduced the PLA molecular weight. Although this reduction in molecular weight was still very significant, it was less when a PLA/LDH‐C12 masterbatch was processed. In contrast, there was no significant reduction in PLA molecular weight when processing with Cloisite® 30B. However, film transparency was compromised when either LDH or MMT nanofillers were used. Evidence from DSC analyses showed a significant increase in heat of fusion when LDH‐C12 was dispersed in PLA compared with Cloisite® 30B, likely indicating a difference in nucleating properties. Complementary optical purity analyses suggested that racemization as a result of processing could influence the PLA crystallinity as determined by DSC in certain cases. A reduction in thermal stability when incorporating LDH‐C12 could be a direct result of PLA molecular weight reduction. XRD and TEM analyses showed that both Cloisite® 30B‐ and LDH‐C12‐based PLA composites yielded exfoliated and intercalated morphologies, but nanofiller agglomeration was also seen when LDH‐C12 was used. PLA/Cloisite® 30B nanocomposite films exhibited significant enhancement in oxygen and water vapor barrier properties, but no such improvement was found in PLA/LDH‐C12 nanocomposite films. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
This work demonstrates the synthesis of lactic acid oligomer-grafted-untreated bacterial cellulose (OLLA-g-BC) by in situ condensation polymerization which increased compatibilization between hydrophobic poly(lactic acid) (PLA) and hydrophilic BC, thus enhancing various properties of PLA-based bionanocomposites, indispensable for stringent food-packaging applications. During the synthesis of OLLA-g-BC, hydrophilic BC is converted into hydrophobic due to structural grafting of OLLA chains with BC molecules. Subsequently, bionanocomposites films are fabricated using solution casting technique and characterized for structural, thermal, mechanical, optical, and gas-barrier properties. Morphological images showed uniform dispersion of BC nanospheres in the PLA matrix, which shows strong filler–matrix interaction. The degradation temperatures for bionanocomposites films were above PLA processing temperature indicating that bionanocomposite processing can be industrially viable. Bionanocomposites films displayed decrease in glass transition (Tg) and ~20% improvement in elongation with 10 wt % fillers indicating towards plasticization of PLA. PLA/OLLA-g-BC films showed a slight reduction in optical transparency but had excellent UV-blocking characteristics. Moreover, dispersed BC act as blocking agents within PLA matrix, reducing the diffusion through the bionanocomposite films which showed ~40% improvement in water-vapor barrier by 5 wt % filler addition, which is significant. The reduced Tg, improved elongation combined with improved hydrophobicity and water-vapor barrier make them suitable candidate for flexible food-packaging applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47903.  相似文献   

11.
The aim of this study was to gain a better understanding of the crystallization behavior of triethyl-citrate-plasticized poly(lactic acid) (PLA–TEC) in the presence of chitin nanocrystals (ChNCs). The isothermal crystallization behavior of PLA–TEC was studied by polarized optical microscopy, scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction (XRD). Interestingly, the addition of just 1 wt % ChNCs in PLA–TEC increased the crystallization rate in the temperature range of 135–125 °C. The microscopy studies confirmed the presence of at least three distinct types of spherulites: negative, neutral, and ring banded. The ChNCs also increased the degree of crystallinity up to 32%, even at a fast cooling rate of 25 °C min−1. The XRD studies further revealed the nucleation effect induced by the addition of ChNCs and thus explained the faster crystallization rate. To conclude, the addition of a small amount (1 wt %) of ChNC to plasticized PLA significantly affected its nucleation, crystal size, and crystallization speed; therefore, the proposed route can be considered suitable for improving the crystallization behavior of PLA. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47936.  相似文献   

12.
Poly(lactic acid)(PLA)/cellulose nanocrystal nanocomposite fibers were prepared by electrospinning at elevated temperature. Columbia Blue, a nonionic hydrophobic dye with a molecular weight and partition coefficient that mimics a systemic agrichemical, was incorporated into the fibers as a model compound. The release of Columbia Blue into water displayed little burst release. Diffusion‐controlled release of Columbia Blue was significantly influenced by the hydrophobicity of the electrospun PLA nanocomposite fibers and followed Fickian diffusion kinetics. The release of Columbia Blue by degradation‐controlled mechanism followed zero‐order, time‐independent Case II kinetics (n = 1.0). Increasing cellulose nanocrystal content in the fibers increased the fiber degradation rate and the Columbia Blue release rate. The plasticizing effect of Columbia Blue on the thermal properties of the electrospun nanocomposite fibers showed the miscibility of Columbia Blue inside the electrospun nanocomposite fibers. A greenhouse trial confirmed the anticipated trends of higher pesticide dosage causing higher whitefly mortality percentage. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2013  相似文献   

13.
One of the most industrially important synthetic textile materials, woven poly(ethylene terephthalate) (PET) fabrics, have limitations in the usage of casual apparel applications due to their unwanted hydrophobicity. For that reason, in this study, to impart permanent hydrophilicity to the PET fabrics, hydrophilic poly(vinyl alcohol) (PVA) and a PVA-based copolymer were introduced to the alkaline hydrolysis pretreated PET surface by graft copolymerization for the first time. The graft modification of PET fabric surface was performed with an industrial-adaptable approach. The synthesis of a novel PVA-g-(N-vinyl-2-pyrrolidone) copolymer was achieved by the introduction of glycidyl methacrylate monomer to the PVA backbone. The structure of the copolymer was evidenced by attenuated total reflection–Fourier transform infrared spectroscopy and 1H-NMR techniques. The introduction of PVA and copolymer structures with desired functional groups to the PET fabric surface was confirmed with the X-ray photoelectron spectroscopy technique. It was obtained that the contact angle–wetting time of PET fabric (145° and 98 s) could be dropped to 37° and 0.1 s and 64° and 0.7 s after PVA and copolymer grafting, respectively. This suggests that the graft-modified PET fabrics may find the potential of use in the textile applications as the alternative hydrophilic materials. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48584.  相似文献   

14.
A set of novel bio‐based star‐shaped thermoset resins was synthesized via ring‐opening polymerization of lactide and employing different multi‐hydroxyl core molecules, including ethylene glycol, glycerol, and erythritol. The branches were end‐functionalized with methacrylic anhydride. The effect of the core molecule on the melt viscosity, the curing behavior of the thermosets and also, the thermomechanical properties of the cured resins were investigated. Resins were characterized by Fourier‐transform infrared spectroscopy, 13C‐NMR, and 1H‐NMR to confirm the chemical structure. Rheological analysis and differential scanning calorimetry analysis were performed to obtain the melt viscosity and the curing behavior of the studied star‐shaped resins. Thermomechanical properties of the cured resins were also measured by dynamic mechanical analysis. The erythritol‐based resin had superior thermomechanical properties compared to the other resins and also, lower melt viscosity compared to the glycerol‐based resin. These are of desired characteristics for a resin, intended to be used as a matrix for the structural composites. Thermomechanical properties of the cured resins were also compared to a commercial unsaturated polyester resin and the experimental results indicated that erythritol‐based resin with 82% bio‐based content has superior thermomechanical properties, compared to the commercial polyester resin. Results of this study indicated that although core molecule with higher number of hydroxyl groups results in resins with better thermomechanical properties, number of hydroxyl groups is not the only governing factor for average molecular weight and melt viscosity of the uncured S‐LA resins. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45341.  相似文献   

15.
We studied the surface modification of polyethylene terephthalate (PET) by grafting with methacrylic acid (MAA) through plasma‐induced polymerization method. The results show that the grafting yield increases with the increase of reaction temperature. The grafting yield is in proportion to the increase of monomer concentration. The grafting yield increases along with the prolonging of reaction time. The solvent has great influence to the grafting reaction. The grafting yield increases with the increase of volume ratio R, which is defined by the volume of water to the volume of alcohol, when using alcohol and water as mixed solvent. The grafting yield is not zero when only using methanol, ethanol or isopropanol as the solvent. The red shift in UV spectrum could be ascribed to different reactive activities of MAA in different solvents, which also can explain the change trend of the grafting yield. The UV‐vis absorbance difference and the FTIR integrated peak area of the C?O stretching increase steadily with the increase of grafting yield, which are almost linear relationship. It was confirmed that MAA was grafted onto the PET surface in terms of UV‐vis spectrophotometric, FTIR and atomic force microscopy analysis. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Simultaneously reinforcing and toughening poly(lactic acid) (PLA) was carried out by adding a small amount of functionalized SiO2 (f-SiO2) with grafting degraded PLA chains in this work. Typically, the high shear force and high temperature condition of melt blending were employed to accelerate the degradation of PLA and graft the degraded PLA chains onto SiO2.The structure characterizations revealed that large quantity of degraded PLA chains were grafted onto the surface of SiO2 by transesterification, condensation, and esterification reactions during melt blending. Due to the improvement in dispersion and interfacial interaction in PLA matrix, the f-SiO2 exhibited an effective reinforcing and toughening effect for PLA, where the tensile strength, elongation at break, and impact toughness of PLA/f-SiO2 nanocomposite increased by 14.9, 47.8, and 30.3% compared to neat PLA. Besides, the degree of crystallinity of PLA was significantly improved by the added f-SiO2, which also contributed to improving mechanical properties. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48834.  相似文献   

17.
1,6‐Hexanediol diacrylate (HDDA) was grafted onto polypropylene (PP) substrates in the presence of benzophenone (BP) and isopropylthioxanthone (ITX) photoinitiators, and then polyurethane acrylate formulations were coated onto the HDDA‐g‐PP substrates, using UV radiation. The amount grafted and the grafting efficiency of the polymerizations were determined gravimetrically. The effects of the photoinitiator concentration and the UV radiation intensity on the physicochemical surface properties and the grafting efficiency of the UV‐radiation grafting polymerizations were characterized in detail using contact‐angle measurements, Fourier transform infrared spectroscopy with attenuated total internal reflection, and scanning electron microscopy. The results showed that the amount grafted and the surface polarity of the HDDA‐g‐PP substrates both increased linearly with increasing BP photoinitiator concentration and UV radiation intensity, and that the addition of a small amount of ITX markedly enhanced both parameters, probably due to photosensitization. The adhesion of the UV‐cured coating onto the HDDA‐g‐PP substrates was evaluated using the crosshatch adhesion test. The results indicated that the amount of HDDA grafted onto the PP substrates should exceed about 1 mmol/cm2 for satisfactory adhesion with the UV‐cured coating. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1446–1461, 2006  相似文献   

18.
This article describes the synthesis and surface modification of epoxy‐ and hydroxy‐functional polymeric microspheres. The functionalized microspheres were synthesized using aqueous and nonaqueous cationic suspension photopolymerizations using multifunctional silicon‐containing epoxy monomers with iodonium salt photoinitiators. Although generally solid microspheres were obtained using these techniques, macroporous spheres could be obtained though the use of porogens. Various rapid and facile acid‐ and base‐catalyzed ring‐opening addition reactions were performed on the epoxy‐functional microspheres. These reactions include the additions of mercaptans, acid chlorides, isocyanates, amines, sodium azide, water, and alcohols. Similar functionalization reactions were performed on the hydroxy‐functional microspheres. The particle size and size distribution were determined using scanning electron microscopy. Fourier transform infrared spectroscopy was used to monitor the functionalization reactions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1574–1585, 2005  相似文献   

19.
Pressure-sensitive adhesives (PSAs), which achieve instantaneous adhesion with the application of light pressure, are used in a large range of commodity applications. In this work, PSAs enriched with cellulose nanocrystals (CNCs) and stabilized with a reactive surfactant (Hitenol AR-1025, AR) were synthesized via in situ emulsion polymerization. Incorporation of CNCs into AR-stabilized PSAs lead to improvements of peel strength, shear strength, and loop tack with significant increases observed at a CNC concentration of 0.75 parts per hundred monomer (phm). A comparative investigation of PSAs stabilized with reactive (AR) and non-reactive (sodium dodecyl sulfate) surfactant revealed that the enhanced performance can be attributed to the synergistic combination of CNCs and reactive surfactant, as only modest improvements can be attributed to surfactant type. In contrast to previous studies that report a trade-off in adhesive properties, we present a well-rounded PSA with exceptional peel strength, shear strength, and loop tack.  相似文献   

20.
Heterotelechelic poly(ethylene glycol)s are widely used in the modification, conjugation, and crosslinking of biomacromolecules. A series of heterotelechelic PEGs with amino acid at one end and hydroxyl group at another end, including α‐glycine‐ω‐hydroxyl‐PEG, α‐proline‐ω‐hydroxyl‐PEG, and α‐phenylalanine‐ω‐hydroxyl‐PEG, were first synthesized in this study. The reaction proceeded at ambient temperature under alkaline conditions via an aqueous solution polymerization of ethylene oxide. Amino group of glycine, proline, and phenylalanine was the initiating center in the polymerizations, and carboxyl group of these amino acids was reserved as one of the active end groups of the obtained heterotelechelic PEG. Purification of the desired products was accomplished by silica gel column chromatography. The obtained heterotelechelic PEGs were characterized by means of FT‐IR, 1H NMR, 13C NMR, MS, and RP‐HPLC. They were in different forms depending on the type of initiating amino acid, e.g. α‐glycine‐ω‐hydroxyl‐PEG and α‐phenylalanine‐ω‐hydroxyl‐PEG are in branched form, and α‐proline‐ω‐hydroxyl‐PEG is linear. Amino acids were conjugated to PEG chains through the stable carbon–nitrogen bond. Compared with the traditional critical polymerization conditions, the advantage of this method is that various amino acid ended heterotelechelic PEGs can be designed and obtained by using different amino acid as the initiator through a much more convenient route, which proceeded in aqueous solution at ambient temperature. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号