首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly fluorescent fluorescein dye labeled star shaped random copolymer with precise energy distribution was synthesized using atom transfer radical polymerization. The arm‐first strategy was utilized to achieve star architecture of the polymer. Dye labeling was carried out by azide‐alkyne cycloaddition. Acrylic acid and fluorescein dye both contributed to achieve a pH response. The synthesized polymer showed an attractive pH‐ and solvent‐sensitive fluorescence owing to efficient energy transfer from one fluorescent center to another. © 2014 Society of Chemical Industry  相似文献   

2.
Star‐shaped amphiphilic polymeric surfactants comprising a hydrophobic polyhedral oligomeric silsesquioxane (POSS) core and hydrophilic poly(ethylene glycol) (PEG) arms with various chain lengths are successfully synthesized using copper(I)‐catalysed azide–alkyne cycloaddition (CuAAC) click reaction. Their chemical structures and molecular characteristics are clearly confirmed using Fourier transform infrared and 1H NMR spectroscopies and gel permeation chromatography, and no homopolymer is found after CuAAC click reaction. Aqueous solutions of these star‐shaped polymers have been investigated using atomic force and transmission electron microscopies and dynamic light scattering studies and it is found that they can self‐assemble into micelles. The sizes of the micelles can be adjusted by the length of the PEG arms, where longer chains not only lead to increased micelle sizes, but also reduce the contact angle values. Moreover, the melting points and root mean square roughness of the obtained star‐shaped polymers are slightly increased on increasing the chain length of the PEG arms. © 2017 Society of Chemical Industry  相似文献   

3.
Four‐arm star‐shaped polymers and copolymers were obtained by transition metal‐catalyzed atom‐transfer radical polymerization (ATRP). The polymers were characterized by FTIR and 1H‐NMR spectroscopy. Gel permeation chromatography results indicated the formation of polystyrene and polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA) arms with controlled molecular weights. In dilute solution, the linear polymers had higher inherent viscosities than star‐shaped ones. Thermogravimetric analysis showed a similar degradation mechanism for linear and star‐shaped polymers. Differential scanning calorimetry indicated the successful formation of diblock star‐shaped copolymers. Copyright © 2006 Society of Chemical Industry  相似文献   

4.
5,10,15,20‐tetra(4‐hydroxyphenyl)porphyrin (THPP) was synthesized by the condensation of pyrrole with 4‐hydroxybenzaldehyde in the presence of solvent (propionic acid). Subsequently, the resulting THPP was converted to a tetrafunctional star‐shaped macroinitiator (porphyrin‐Br4) by esterification of it with 2‐bromopropanoyl bromide, and then atom transfer radical polymerization (ATRP) of styrene was conducted at 110°C with CuCl/2,2′‐bipyridine as the catalyst system. The resulting product was reacted with NBS to obtain star‐shaped initiator porphyrin‐(PSt‐Br)4, which was used the following ATRP of the GMA to synthesize star–comb‐shaped grafted polymer porphyrin‐(PSt‐g‐PGMA)4. The number molecular weight was 2.3 × 104 g/mol, and the dispersity was narrow (Mw/Mn = 1.32). The structure of the polymers was investigated by NMR, UV–vis, IR, and GPC measurement. The self‐assembly behavior of the polymer porphyrin‐(PSt‐g‐PGMA)4 was studied by DLS and AFM. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
Grafting of tert‐butyl acrylate (tBuA), methyl methacrylate (MMA), and styrene (St) monomers (M) by Cu(I)‐mediated ATRP from polystyrene (PSt) macroinitiator (Mn = 5620, polydispersity index, PDI = 1.12), containing initiating 2‐bromopropionyloxy groups (I) (bound to 34% of aromatic cores; 11 groups per backbone), was performed using conditions suitable for the respective homopolymerizations. The preparation of PSt‐g‐PtBuA in bulk using an initial molar ratio [M]0/[I]0 = 140 had a controlled character up to Mn = (132–148) × 103 (PDI = 1.08–1.16). With MMA and St and using the same [M]0/[I]0, preliminary experiments were made; the higher the monomer conversion, the broader was the distribution of molecular weight of the products. Graft copolymerizations of all these monomers at [M]0/[I]0 = 840 or 1680 were successfully conducted up to high conversions. Low‐polydispersity copolymers, with very long side chains, in fact star‐like copolymers, were obtained mainly by tuning the deactivator amount in the reaction mixture. (PSt‐g‐PtBuA, DPn,sc (DP of side chain) = 665, PDI = 1.24; PSt‐g‐PMMA, DPn,sc = 670, PDI = 1.43; PSt‐g‐PSt, DPn,sc = 324, PDI = 1.11). Total suppression of intermolecular coupling was achieved here. However, the low concentrations of initiator required long reaction times, leading sometimes to formation of a small amount (~5%) of low‐molecular‐weight polymer fraction. This concomitant process is discussed, and some measures for its prevention are proposed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3662–3672, 2006  相似文献   

6.
In the present study, it has been demonstrated that polystyrene‐g‐polycaprolactone (PS‐g‐PCL) was successfully prepared by “click chemistry.” For this purpose, first, poly(styrene‐co‐4‐chloromethylstyrene) (P(S‐co‐CMS)) with 4‐chloromethylstyrene content (10%) was synthesized. Second, alkyne‐functionalized polycaprolactone (PCL) was obtained using propargyl alcohol and caprolactone. P(S‐co‐CMS) and PCL were reacted in N,N‐dimethylformamide for 24 h at 25°C to give PS‐g‐PCL. The synthesized polymer was characterized by nuclear magnetic resonance (1H‐NMR), gel permeation chromatography, Fourier transform infrared spectroscopy and thermogravimetric analysis. The apparent activation energies for thermal degradation of PS‐g‐PCL were obtained by differential (Kissenger) and integral methods (Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose, Tang, Coats–Redfern, Van Krevelen et al.). The decomposition mechanism and pre‐exponential factor were calculated in terms of Coats–Redfern method. The most likely decomposition processes of first and second degradation stages were An type and F3 type, respectively. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
Jinqing Qu  Toshio Masuda 《Polymer》2007,48(16):4628-4636
Novel chiral acetylene monomers bearing carbazole and triphenylamine groups, namely, (S)-3-butyn-2-yl 2-(9-carbazolyl)ethyl carbonate (1) and (S)-3-butyn-2-yl 4-(diphenylamino)benzoate (2) were synthesized, and polymerized with Rh+(nbd)[η6-C6H5B(C6H5)3] catalyst to give the corresponding polymers with moderate molecular weights (Mn 13.0 × 103 and 15.5 × 103) in good yields (86% and 88%). CD spectroscopic studies revealed that poly(1) and poly(2) took predominantly one-handed helical structure in CHCl3. The helical structures of poly(1) and poly(2) were very stable against heating and addition of MeOH. The solution of poly(1) and poly(2) emitted fluorescence in 0.52% and 7.2% quantum yields, which were lower than those of the corresponding monomers 1 and 2 (22.5% and 76.5%). The cyclic voltammograms of the polymers indicated that the oxidation potentials of the polymers were lower than those of the monomers. The polymers showed electrochromism and changed the color from pale yellow to pale blue by application of voltage, presumably caused by the formation of polaron at the carbazole and triphenylamine moieties. The onset temperatures of weight loss of poly(1) and poly(2) were 225 and 270 °C under air.  相似文献   

8.
We report the synthesis of a series of new polymers containing azo linkage as a part of the main chain. The monomer 1,2‐bis(7‐bromo‐9,9‐dioctyl‐9H ‐fluoren‐2‐yl)diazene was synthesized using a precursor approach which avoids non‐selective bromination and was copolymerized with various donor or acceptor units. The homopolymer poly[1,2‐bis(9,9‐dioctyl‐9H ‐fluoren‐2‐yl)diazene] ( P1 ) as well as the copolymers poly[1‐(9,9‐dioctyl‐9H ‐fluoren‐2‐yl)‐2‐(9,9,9′,9′‐tetraoctyl‐9H ,9′H ‐[2,2′‐bifluoren]‐7‐yl)diazene] ( P2 ), poly[1‐(9,9‐dioctyl‐7‐(4‐octylthiophen‐2‐yl)‐9H ‐fluoren‐2‐yl)‐2‐(9,9‐dioctyl‐9H ‐fluoren‐2‐yl)diazene] ( P3 ) and poly[4‐(7‐((9,9‐dioctyl‐9H ‐fluoren‐2‐yl)diazenyl)‐9,9‐dioctyl‐9H ‐fluoren‐2‐yl)benzo[c ][1,2,5]thiadiazole] ( P4 ) were synthesized by Suzuki polymerization. The copolymers poly[1‐(7‐(4,4‐dioctyl‐4H ‐cyclopenta[1,2‐b :5,4‐b ′]dithiophen‐2‐yl)‐9,9‐dioctyl‐9H ‐fluoren‐2‐yl)‐2‐(9,9‐dioctyl‐9H ‐fluoren‐2‐yl)diazene] ( P5 ) and poly[4‐(5‐(7‐((9,9‐dioctyl‐9H ‐fluoren‐2‐yl)diazenyl)‐9,9‐dioctyl‐9H ‐fluoren‐2‐yl)‐4‐octylthiophen‐2‐yl)‐7‐(4‐octylthiophen‐2‐yl)benzo[c ][1,2,5]thiadiazole] ( P6 ) were synthesized by direct arylation polymerization reaction. Polymers synthesized using the direct arylation method show good molecular weight, with absorption maxima in the range 500 to 532 nm. P5 and P6 possess low optical bandgaps of 1.81 and 1.86 eV, respectively. A power conversion efficiency of 0.53% with open circuit voltage of 0.53 V, short circuit current density of 3.1 mA cm?2 and fill factor of 29% has been achieved with C71‐PCBM as acceptor in bulk heterojunction solar cells fabricated with P5 as donor. © 2016 Society of Chemical Industry  相似文献   

9.
Hyperbranched polystyrenes (HPS) were prepared by living radical polymerization of 4‐vinylbenzyl N,N‐diethyldithiocarbamate (VBDC) as an inimer under UV irradiation. These HPS exhibited large amounts of photofunctional diethyldithiocarbamate (DC) groups on their outside surfaces. We derived star‐HPS (SHPS) by grafting from such HPS macroinitiator with methyl methacrylate (MMA) or ethyl methacrylate (EMA). The ratios of radius of gyration to hydrodynamic radius Rg/Rh for HPS and SHPS in tetrahydrofuran (THF) were in the range of 0.74–0.90 and 1.05–1.12, respectively. HPS and SHPS behaved in a good solvent as hard and soft spheres, respectively. We demonstrated the structural ordering of both branched polymers in THF through small‐angle X‐ray scattering (SAXS), by varying the polymer concentration. As a result, HPS and SHPS formed face‐centered‐cubic (fcc) and body‐centered‐cubic (bcc) structures, respectively, near the overlap threshold (C*). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3340–3345, 2006  相似文献   

10.
1,10‐Phenanthroline‐functionalized polyaryletherketone (PPEK) was synthesized by the amidation reaction of 5‐amino‐1,10‐phenanthroline with polyaryletherketone containing pendant acyl chloride groups. Subsequently, a series of novel rare earth coordination polymers (with rare earths Eu3+, Tb3+, Sm3+ and Dy3+) were prepared, using PPEK as macromolecular ligand and the small 1,10‐phenanthroline (Phen) molecule as synergistic ligand. Their structures were characterized using Fourier transform infrared spectroscopy, elemental analysis and X‐ray diffraction, which confirmed that both PPEK and Phen participated in the coordination reaction with the rare earth ions, and that the rare earth ions could disperse homogeneously in the polymer matrix. The rare earth coordination polymers were soluble in polar solvents such as N,N‐dimethylformamide, N,N‐dimethylacetamide and N‐methylpyrrolidone, and could be easily cast into transparent tough thin films. Fluorescence measurements indicated that all the coordination polymers exhibited the intense characteristic fluorescence of the corresponding rare earth ions under ultraviolet excitation, showing their application potential in optical display devices. Copyright © 2010 Society of Chemical Industry  相似文献   

11.
The aromatic‐aliphatic copolyamides were synthesized by condensation polymerization of aromatic diamine PPD (or APS, where PPD is p‐phenylene diamine and APS is aminophenyl sulfone), aliphatic diamine HDA (or EDA, where HDA is hexanediamine and EDA is ethylenediamine), and TPC (where TPC is terephthalyl chloride) with different molar ratios of aromatic diamine to aliphatic diamine. The steady‐state fluorescence of these condensed copolymers was investigated. These copolyamides exhibit strong blue‐to‐green fluorescence. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 315–321, 2005  相似文献   

12.
An inverse, free‐radical emulsion polymerization technique was designed for the preparation of copolymers of acrylamide and sodium acrylate modified with low amounts (<0.5 mol %) of a series of amphiphilic comonomers, the isooctylphenoxy–poly(oxyethylene)(n) methacrylates (1 ≤ n ≤ 12). The products of the reaction were hydrophobically modified water‐soluble polymers (HMWSPs) of high molecular weight encapsulated within water droplets dispersed in an organic medium. Kinetic studies showed that the full‐conversion samples were rather homogeneous in composition because of the specificity of the process. A mechanistic scheme is proposed that accounts for the incorporation level of the amphiphilic comonomer as a function of its hydrophile–lipophile balance and the nature of the redox initiator (hydrophilic or lipophilic). The rheological properties of the HMWSPs in aqueous solutions were investigated as a function of the comonomer content and the nature of the initiator with steady‐flow experiments. The thickening properties were directly correlated to the conditions of synthesis and were optimal when the initiator and the amphiphilic comonomer were located in two distinct phases. A maximum in viscosity was observed for a hydrophobe content of about 0.3 mol %. An examination of the viscosity as a function of the shear rate and time showed that these solutions had all the characteristics of associating polymers. The complex rheological behavior was the result of the balance between interchain and intrachain hydrophobic liaisons and the kinetics of disorganization and reorganization of the network structure. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1418–1430, 2002; DOI 10.1002/app.10337  相似文献   

13.
Well‐defined side‐chain liquid crystalline star‐shaped polymers were synthesized with a combination of the “core‐first” method and atom transfer radical polymerization (ATRP). Firstly, the functionalized macroinitiator based on the α‐Cyclodextrins (α‐CD) bearing functional bromide groups was synthesized, confirmed by 1H‐NMR, MALDI‐TOF, and FTIR analysis. Secondly, the side‐chain liquid crystalline arms poly[6‐(4‐methoxy‐4‐oxy‐azobenzene) hexyl methacrylate] (PMMAzo) were prepared by ATRP. The characterization of the star polymers were performed with 1H‐NMR, gel permeation chromatography (GPC), differential scanning calorimetry (DSC) and thermal polarized optical microscopy (POM). It was found that the liquid crystalline behavior of the star polymer α‐CD‐PMMAzon was similar to that of the linear homopolymer. The phase‐transition temperatures from the smectic to nematic phase and from the nematic to isotropic phase increased as the molecular weight increased for most of these samples. All star‐shaped polymers show photoresponsive isomerization under the irradiation with Ultraviolet light. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
The combination of radical‐promoted cationic polymerization, atom transfer radical polymerization (ATRP) and click chemistry was employed for the efficient preparation of poly(cyclohexene oxide)‐block‐polystyrene (PCHO‐b‐PSt). Alkyne end‐functionalized poly(cyclohexene oxide) (PCHO‐alkyne) was prepared by radical‐promoted cationic polymerization of cyclohexene oxide monomer in the presence of 1,2‐diphenyl‐2‐(2‐propynyloxy)‐1‐ethanone (B‐alkyne) and an onium salt, namely 1‐ethoxy‐2‐methylpyridinium hexafluorophosphate, as the initiating system. The B‐alkyne compound was synthesized using benzoin photoinitiator and propargyl bromide. Well‐defined bromine‐terminated polystyrene (PSt‐Br) was prepared by ATRP using 2‐oxo‐1,2‐diphenylethyl‐2‐bromopropanoate as initiator. Subsequently, the bromine chain end of PSt‐Br was converted to an azide group to obtain PSt‐N3 by a simple nucleophilic substitution reaction. Then the coupling reaction between the azide end group in PSt‐N3 and PCHO‐alkyne was performed with Cu(I) catalysis in order to obtain the PCHO‐b‐PSt block copolymer. The structures of all polymers were determined. Copyright © 2010 Society of Chemical Industry  相似文献   

15.
方申文  段明  易峰  李娟 《化学世界》2008,49(4):244-248
简介了"链接"化学的基本特点,综述了近几年来叠氮-炔"链接"化学在合成不同结构聚合物中的应用。  相似文献   

16.
Bromo‐Double‐Terminated polystyrene (Br‐PSt‐Br) and poly(methyl methacrylate) (Br‐PMMA‐Br) with predesigned molecular weight and narrow polydispersity were prepared by atom transfer radical polymerization (ATRP) using the initiating system aa′‐dibromo‐p‐xylene(DBX) / CuBr/2,2′‐bipyridine(bipy). The precursor bromo‐terminated polymers were subsequently functionalized with fullerene C60 using CuBr/bipy as the catalyst system under microwave irradiation (MI). The telechelic C60 end‐capped products were characterized by gel permeation chromatography (GPC), UV‐vis, FT‐IR, TGA, DSC, 1H NMR, and 13C NMR. The results showed that microwave irradiation could significantly increase the rate of fullerenation reaction, and the physical properties and structure of the C60 end‐capped polymers are not modified by the use of the microwave. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 828–834, 2006  相似文献   

17.
A facile click chemistry approach to the functionalization of three‐dimensional hyperbranched polyurethane (HPU) to graphene oxide (GO) nanosheets is presented. HPU‐functionalized GO samples of various compositions were synthesized by reacting alkyne‐functionalized HPU with azide‐functionalized GO sheets. The morphological characterization of the HPU‐functionalized GO was performed using transmission electron microscopy and its chemical characterization was carried out using Fourier transform‐infrared spectroscopy, nuclear magnetic resonance spectroscopy, and X‐ray photoelectron spectroscopy. The graphene sheet surfaces were highly functionalized, leading to improved solubility in organic solvents, and consequently, enhanced mechanical, thermal, and thermoresponsive and photothermal shape memory properties. The strategy reported herein provides a very efficient method for regulating composite properties and producing high performance materials. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43358.  相似文献   

18.
Syntheses of novel liquid‐crystalline polymers containing azobenzene moieties were performed by a convenient route with an acrylate backbone. The azobenzenes were key intermediates of the monomers, and side‐chain liquid‐crystalline polymers were prepared, that is, poly[α‐{4‐[(4‐acetylphenyl)azo]phenoxy}alkyloxy]acrylates, for which the spacer length was 3 or 11 methylene units. In addition, poly[3‐{4‐[(3,5‐dimethylphenyl)azo]phenoxy}propyloxy]acrylate was prepared with a spacer length of 3 methylene units. The structures of the precursors, monomers, and polymers were characterized with Fourier transform infrared, 1H‐NMR, and 13C‐NMR techniques. The polymers were obtained by conventional free‐radical polymerization with 2,2′‐azobisisobutyronitrile as an initiator. The phase‐transition temperatures of the polymers were studied with differential scanning calorimetry, and the phase structures were evaluated with a polarizing optical microscopy technique. The results showed that two of the monomers and their corresponding polymers exhibited nematic liquid‐crystalline behavior, and one of the monomers and its corresponding polymer showed smectic liquid‐crystalline behavior. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2653–2661, 2002  相似文献   

19.
A series of well‐defined different chain lengths polymers, which contain the organometallic 1,3‐dichloro‐tetra‐n‐butyl‐distannoxane core in the main chain, was obtained in one‐pot via a novel 1,3‐dichloro‐tetra‐n‐butyl‐distannoxane (complex A )/azobisisobutyronitrile (AIBN) initiating system used in reverse atom transfer radical polymerization of styrene in different concentrations. The introduction of organotin complex A was supported by 1H‐NMR, 13C–NMR, and the Inductive Coupled Plasma Emission Spectrometer analysis of the organotin‐containing polymer. Moreover, the mechanism of polymerization was investigated by changing the ratio of complex A to AIBN. It was concluded that the complex A not only acted as an important part of the initiator system but also introduced the functional organometallic group into the polymer chain. Additionally, the organotin‐containing polymer could be used as catalyst for esterification, and the reaction products' conversion could reach high up to 99% and does not decrease after four successive cycles. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
Amphiphilic heteroarm star‐shaped polymers have important theoretical and practical significance. In this work, amphiphilic heteroarm star‐shaped polymer was synthesized by the use of polyfunctional chain transfer agent via sequential free radical polymerization in two steps. First, conventional free radical polymerization of methyl methacrylate (MMA) initiated by 2,2′‐azobis (isobutyronitrile) (AIBN) was carried out in the presence of polyfunctional chain transfer agent, pentaerythritol‐tertrakis (3‐mercaptopropinate) (PETMP). At appropriate monomer conversion, about two‐arm s‐PMMA having two residual thiol groups at the chain center was obtained. Second, the s‐PMMA obtained above was used as macro‐chain‐transfer agent for free radical polymerization of acrylic acid (AA). The heteroarm star‐shaped polymer with the hydrophobic PMMA segment and the hydrophilic PAA segment was obtained. The successful synthesis of heteroarm star‐shaped polymers, (PMMA)2(AA)2, was confirmed by 1H‐NMR and its self‐assembly behavior in different solvents. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号