首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A pH‐sensitive hydrogel [P(CE‐co‐DMAEMA‐co‐MEG)] was synthesized by the free‐radical crosslinking polymerization of N,N‐dimethylaminoethyl methacrylate (DMAEMA), poly(ethylene glycol) methyl ether methacrylate(MPEG‐Mac) and methoxyl poly(ethylene glycol)‐poly(caprolactone)‐methacryloyl methchloride (PCE‐Mac). The effects of pH and monomer content on swelling property, swelling and deswelling kinetics of the hydrogels were examined and hydrogel microstructures were investigated by SEM. Sodium salicylate was chosen as a model drug and the controlled‐release properties of hydrogels were pilot studied. The results indicated that the swelling ratios of the gels in stimulated gastric fluids (SGF, pH = 1.4) were higher than those in stimulated intestinal fluids (SIF, pH = 7.4), and followed a non‐Fickian and a Fickian diffusion mechanism, respectively. In vitro release studies showed that its release rate depends on different swelling of the network as a function of the environmental pH and DMAEMA content. SEM micrographs showed homogenous pore structure of the hydrogel with open pores at pH 1.4. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40737.  相似文献   

2.
Poly(N‐isopropylacrylamide‐co‐sodium acrylate) [poly(NIPAM‐co‐SA)] hydrogels were modified with three different kind of surfactants (cationic, anionic, and nonionic) to study the effect on the swelling properties. The structural variation of the surfactant‐modified hydrogels was investigated in detail. The interaction between the surfactants and the hydrogel varies and strictly depends on the surfactant type. The variation in thermal stability of the modified surfactant hydrogels was investigated and compared with unmodified hydrogel. Further, the hydrogel swelling/diffusion kinetic parameters were investigated and diffusion of water into hydrogel was found to be of the non‐Fickian transport mechanism. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3423–3430, 2007  相似文献   

3.
A series of pH‐temperature dual stimuli‐responsive random copolymers poly[N,N‐dimethylaminoethyl methacrylate‐co‐poly(poly(ethylene glycol) methyl ether methacrylate][poly(DMAEMA‐co‐MPEGMA)] were synthesized by free radical polymerization. The supramolecular hydrogel was formed by pseudopolyrotaxane, which was prepared with the host‐guest interactions between α‐cyclodextrin (α‐CD) and poly(ethylene glycol) (PEG) side chains. Fourier transform infrared (FT‐IR), nuclear magnetic resonance (1H NMR), and X‐ray diffraction (XRD) confirmed the structures of the hydrogels. The pH‐temperature dual stimuli responsive properties of the hydrogels were characterized by rheometer. Finally, the controllable drug release behavior of the hydrogel, which was used 5‐fluorouracil (5‐Fu) as the model drug, was investigated at different temperatures and different pH values. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43279.  相似文献   

4.
Jie Zhang 《Polymer》2009,50(11):2516-198
Dual temperature- and pH-sensitive comb-type grafted cationic hydrogels are successfully synthesized by grafting polymeric chains with freely mobile ends, which are composed of both N-isopropylacrylamide (NIPAM) segments and N,N-dimethylamino ethyl methacrylate (DMAEMA) segments, onto the backbone of crosslinked poly(NIPAM-co-DMAEMA) networks. Equilibrium and dynamic swelling/deswelling properties of the prepared hydrogels responding to pH and/or temperature are investigated. The prepared hydrogels demonstrate a lower critical solution temperature (LCST) at about 34 °C and a pKa value at about pH 7.3. At lower pH and lower temperature, both the swelling degree and the swelling rate of the comb-type grafted hydrogel are larger than those of the normal-type crosslinked hydrogel. The comb-type grafted poly(NIPAM-co-DMAEMA) hydrogel exhibits a more rapid deswelling rate than that of the normal-type hydrogel in response to a pH jump from 2.0 to 11.0 at a fixed temperature. The volume changes of the poly(NIPAM-co-DMAEMA) hydrogels are acute in a series of fixed buffer solutions with an abrupt increase of environmental temperature from 18 °C to a temperature higher than the LCST. The comb-type grafted poly(NIPAM-co-DMAEMA) hydrogels show quite fast shrinking behaviors in response to simultaneous dual temperature and pH stimuli. Drug-release in vitro from the prepared poly(NIPAM-co-DMAEMA) hydrogels is carried out when the environmental temperature and pH are changed synchronously. The results show that the model drug Vitamin B12 is released much more rapidly from the comb-type grafted hydrogel than that from the normal-type hydrogel. The proposed dual temperature/pH-sensitive comb-type grafted cationic poly(NIPAM-co-DMAEMA) hydrogel in this study may find various potential applications, e.g., for fabricating rapid-response smart sensors, actuators, and chemical/drug carriers and so on.  相似文献   

5.
In this article, thermosensitive poly(N‐isopropyl acrylamide‐co‐vinyl pyrrolidone)/chitosan [P(NIPAM‐co‐NVP)/CS] semi‐interpenetrating (semi‐IPN) hydrogels were prepared by redox‐polymerization using N,N‐methylenebisacrylamide as crosslinker and ammonium persulfate/N,N,N′,N′‐tetramethylethylenediamine as initiator. Highly stable and uniformly distributed Ag nanoparticles were prepared by using the semihydrogel networks as templates via in situ reduction of silver nitrate in the presence of sodium borohydride as a reducing agent. Introduction of CS improves the hydrogels swelling ratio (SR) and stabilizes the formed Ag nanoparticles in networks. Scanning electron microscopy and transmission electron microscopy revealed that Ag nanoparticles were well dispersed with diameters of 10 nm. The semi‐IPN hydrogel/Ag composites had higher SR and thermal stability than its corresponding semi‐IPN hydrogels. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
In this article, a series of poly(N‐isopropylacrylamide) (PNIPAM)‐based hydrogels were prepared under microwave irradiation using poly(ethylene oxide)‐600 (PEO‐600) as reaction medium and microwave‐absorbing agent as well as pore‐forming agent. All of the temperature measurements, gel fractions, and FTIR analyses proved that the PNIPAM hydrogels were successfully synthesized. Within 1 min, the PNIPAM hydrogel with a 98% yield was obtained under microwave irradiation. The PNIPAM hydrogels thus prepared exhibited controllable properties such as pore size, equilibrium swelling ratios, and swelling/deswelling rates when changing the feed weight ratios of monomer (N‐isopropylacrylamide, NIPAM) to PEO‐600. These properties are well adapted to the different requirements for their potential application in many fields such as biomedicine. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:4177–4184, 2006  相似文献   

7.
Beads composed of alginate, poly(N‐isopropylacrylamide) (PNIPAM), the copolymers of N‐isopropylacrylamide and methacrylic acid (P(NIPAM‐co‐MAA)), and the copolymers of N‐isopropylacrylamide, methacrylic acid, and octadecyl acrylate (P(NIPAM‐co‐MAA‐co‐ODA)), were prepared by dropping the polymer solutions into CaCl2 solution. The beads were freeze‐dried and the release of blue dextran entrapped in the beads was observed in distilled water with time and pH. The degree of release was in the order of alginate bead < alginate/PNIPAM bead ≈ alginate/P(NIPAM‐co‐MAA) bead < alginate/P(NIPAM‐co‐MAA‐co‐ODA) bead. On the other hand, swelling ratios reached steady state within 20 min, and the values were 200–800 depending on the bead composition. The degree of swelling showed the same order as that of release. Among the beads, only alginate/P(NIPAM‐co‐MAA‐co‐ODA) bead exhibited pH‐dependent release. At acidic condition, inter‐ and intraelectrostatic repulsion is weak and P(NIPAM‐co‐MAA‐co‐ODA) could readily be assembled into an aggregate due to the prevailing hydrophobic interaction of ODA. Thus, it could block the pore of bead matrix, leading to a suppressed release. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
The pH‐sensitive swelling and release behaviors of the anionic P(MAA‐co‐EGMA) hydrogels were investigated as a biological on–off switch for the design of an intelligent drug delivery system triggered by external pH changes. There was a drastic change of the equilibrium weight swelling ratio of P(MAA‐co‐EGMA) hydrogels at a pH of around 5, which is the pKa of poly (methacrylic acid) (PMAA). At a pH below 5, the hydrogels were in a relatively collapsed state but at a pH higher than 5, the hydrogels swelled to a high degree. When the molecular weight of the pendent poly(ethylene glycol) (PEG) of the P(MAA‐co‐EGMA) increased, the swelling ratio decreased at a pH higher than 5. The pKa values of the P(MAA‐co‐EGMA) hydrogels moved to a higher pH range as the pendent PEG molecular weight increased. When the feed concentration of the crosslinker of the hydrogel increased the swelling ratio of the P(MAA‐co‐EGMA) hydrogels decreased at a pH higher than 5. In release experiments using Rhodamine B (Rh‐B) as a model solute, the P(MAA‐co‐EGMA) hydrogels showed a pH‐sensitive release behavior. At low pH (pH 4.0) a small amount of Rh‐B was released while at high pH (pH 6.0) a relatively large amount of Rh‐B was released from the hydrogels. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
A series of novel nanocomposite hydrogels were prepared by a cross‐linking copolymerization method. Structural and morphological characterizations of the nanocomposite hydrogels revealed that a good compatibility exists between poly(acrylamide‐co‐sodium methacrylate) [P(AM‐co‐SMA)] and carboxyl‐functionalized carbon nanotubes (MWNTs–COOH). The P(AM‐co‐SMA)/MWNTs–COOH nanocomposite hydrogels with a suitable MWNTs–COOH loading exhibited better swelling capability, higher pH sensitivity, good reversibility, and repeatability, and rapid response to external pH stimuli, compared with the P(AM‐co‐SMA). The compression mechanical tests revealed that the nanocomposite hydrogel displayed excellent compressive strengths and elastic mechanical properties, with higher ultimate compressive stress, and meanwhile still retain a good recoverable strain in the presence of MWNTs–COOH. These excellent properties may primarily be attributed to effectively dispersing of a suitable MWNTs–COOH loading into the matrix of the polymers and formation of additional hydrogen bonds. The nanocomposite hydrogels were expected to find applications in drug controlled release and issue engineering. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

10.
Poly(N‐isopropylacrylamide‐co‐sodium acrylate) gels with N,N‐methylene bisacrylamde (BIS) as crosslinker were prepared by free radical polymerization method at the temperature of 35°C, which was just around the lower critical solution temperature (LSCT) of the hydrogels. The gels synthesized at 35°C demonstrated strong swellability and fast responseability when compared with the gels synthesized at the temperature of 0 and 18°C (below the LCST) and 50 and 80°C (above the LSCT). The response rate and swelling behavior of poly(N‐isopropylacrylamide‐co‐sodium acrylate) gels was investigated and characterized by the temperature‐dependent swelling ratio and swelling and deswelling kinetics. The swelling behavior of the gels indicated that the synthesis temperature was the main factor when the swellability concerned and also had effect on the responseability of the resulting hydrogels. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
Environmentally sensitive hydrogels responsive to various stimuli such as temperature, pH, ionic strength of the medium and the solvent were prepared by using N‐isopropyl acrylamide (NIPAM), acrylamide (AAm) and monomers that have various number of carboxylic acid (XA) functionality using N,N′‐methylene bisacrylamide (Bis) as crosslinker. Hydrogels were prepared via free radical polymerization reaction in aqueous solution. P(NIPAAm‐co‐AAm) and p(NIPAAm‐co‐AAm)/XA hydrogels that contain monoprotic crotonic acid (CA) exhibit a lover critical solution temperature (LCST) at 28°C, whereas p(NIPAAm‐co‐AAm)/IA (IA:itaconic acid), and P(NIPAAm‐co‐AAm)/ACA (ACA:acotonic acid) hydrogels exhibit a lover critical solution temperature at 30.7°C and 34.4°C, respectively. Spectroscopic and thermal analyses were performed for the structural and thermal characterizations of the prepared hydrogel. The swelling experiments as equilibrium swelling percentages by gravimetrically were carried out in different solvents, at different solutions temperature, pH, and ionic strengths to determine their effects on swelling characteristic of hydrogels. POLYM. ENG. SCI., 55:843–851, 2015. © 2014 Society of Plastics Engineers  相似文献   

12.
Poly[(dimethylaminoethyl methacrylate)‐co‐(acrylic acid)] [poly(DMAEMA‐co‐AAc)] hydrogels have been synthesized by UV‐induced copolymerization of dimethylaminoethyl methacrylate (DMAEMA) and acrylic acid monomer. The effects of pH and ionic strength on the swelling behaviour of poly(DMAEMA‐co‐AAc) hydrogels were investigated in detail. It was found that there is minimal equilibrium swelling ratio (ESR) for the hydrogels with the change of pH, and the pH at minimal ESR of the hydrogels was defined by the isoelectric points (IEP), similar to the situation with protein molecules. The IEP of the hydrogels shifted to higher values with increase in the DMAEMA content in the hydrogels. Antipolyelectrolyte behaviour of the hydrogels at a pH near the IEP was observed as well, and the ESR increased with increasing ionic strength. The study of swelling kinetics of the hydrogels showed that the swelling process was Fickian at the IEP and non‐Fickian when the pH deviated from the IEP. Copyright © 2003 Society of Chemical Industry  相似文献   

13.
A series of interpenetrating polymer network (IPN) hydrogels having higher swelling ratio (SR) and thermosensitivity were synthesized from sodium acrylate (SA) and N‐isopropyl acrylamide (NIPAAm) by a two‐step method. A series of the porous poly(sodium acrylate ‐co‐1‐vinyl–2‐pyrrolidone) [poly(SA‐co‐VP)], (SV), hydrogels were prepared from acrylic acid having 90% degree of neutralization and VP monomer in the first step. The second step is to immerse the SV dried gels into the NIPAAm solution containing initiator, accelerator, and crosslinker to absorb NIPAAm solution and then polymerized to form the poly(SA‐co‐VP)/poly(NIPAAm) IPN hydrogels (SVN). The effect of the different molar ratios of SA/VP and the content of NIPAAm on the swelling behavior and physical properties of the SVN hydrogels was investigated. Results showed that the SVN hydrogels displayed an obviously thermoreversible behavior when the temperature turns across the critical gel transition temperature (CGTT) of poly(NIPAAm) hydrogel. The pore diameter distributions inside the hydrogel also indicated that the pore sizes inside the SVN hydrogels were smaller than those inside the SV hydrogels. At the same time, the more proportion of SA was added into the hydrogel, the larger pore diameter of the SV hydrogel was formed. The results also showed that the SR decreased with an increase of the VP content in the SV hydrogel and more obviously decreased in the SVN hydrogels. The SVN networks also showed stronger shear moduli than SV hydrogels. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Hydrogels have been widely used as mild biomaterials due to their bio‐affinity, high drug loading capability and controllable release profiles. However, hydrogel‐based carriers are greatly limited for the delivery of hydrophobic payloads due to the lack of hydrophobic binding sites. Herein, nano‐liposome micelles were embedded in semi‐interpenetrating poly[(N‐isopropylacrylamide)‐co‐chitosan] (PNIPAAm‐co‐CS) and poly[(N‐isopropylacrylamide)‐co‐(sodium alginate)] (PNIPAAm‐co‐SA) hydrogels which were responsive to both temperature and pH, thereby establishing tunable nanocomposite hydrogel delivery systems. Nano‐micelles formed via the self‐assembly of phospholipid could serve as the link between hydrophobic drug and hydrophilic hydrogel due to their special amphiphilic structure. The results of transmission and scanning electron microscopies and infrared spectroscopy showed that the porous hydrogels were successfully fabricated and the liposomes encapsulated with baicalein could be well contained in the network. In addition, the experimental results of response release in vitro revealed that the smart hydrogels showed different degree of sensitiveness under different pH and temperature stimuli. The results of the study demonstrate that combining PNIPAAm‐co‐SA and PNIPAAm‐co‐CS hydrogels with liposomes encapsulated with hydrophobic drugs is a feasible method for hydrophobic drug delivery and have potential application prospects in the medical field. © 2018 Society of Chemical Industry  相似文献   

15.
Summary The swelling behaviour in water-dioxane mixtures of hydrogels containing N-isopropylacrylamide (NIPAM) and N,N-dimethylacrylamide (DMAM) is investigated as a function of dioxane content and temperature. The composition of the hydrogels, reported as the mol percentage of DMAM units, x, varies from 0 up to 100. It is found that the hydrogel containing only NIPAM units, GPNIPAM, deswells significantly in the water-rich region, while the hydrogel containing only DMAM units, GPDMAM, presents a pronounced deswelling in the dioxane-rich region. This deswelling becomes less significant with decreasing the DMAM content x, when using the hydrogels of the copolymers GP(NIPAM-co-DMAMx). This swelling behaviour of the hydrogels results from a combination of the lower critical solution temperature-type cononsolvency behaviour of poly(N-isopropylacrylamide) with the upper critical solution temperature-type cononsolvency behaviour of poly(N,N-dimethylacrylamide) in water-dioxane mixtures.  相似文献   

16.

Three crosslinkers, poly(ethylene glycol) diacrylate (PEGDA), glycerol ethoxylate triacrylate (GETA) and citric acid-(PEG acrylate)3 (CA-PEGTA) derived from poly(ethylene glycol) (PEG) were synthesized at first. The three series of poly (N-isopropylacrylamide) (PNIPAAm) hydrogels were prepared by photopolymerization with the crosslinkers and compared with a hydrogel based on commercial crosslinker, N,N′-methylene bis-acrylamide (NMBA). The influence of the crosslinker structures and contents on the swelling behaviour, mechanical properties, and drug release of the hydrogels was investigated. The results showed that the hydrogels based on PEGDA and NMBA exhibited the highest and the lowest swelling ratio, respectively. The content of crosslinker of all hydrogel series showed good thermosensitivity and thermo-reversibility. The critical gel transition temperature (CGTT) appeared at 32 °C for the hydrogel based on NMBA, but appeared at about 34 °C for other hydrogels due to higher hydrophilicity of the crosslinker. In the mechanical properties, three-arms crosslinker GETA and CA-PEGTA led to higher mechanical strength than a linear crosslinker PEGDA. A hydrogel based on GETA (NG6) showed the highest shear modulus of 656.9 kPa and Young’s modulus of 1655.0 kPa. The hydrogels containing higher content of crosslinker revealed lower swelling ratio and higher mechanical strength. In the drug release, the hydrogels with higher swelling ratios showed higher drug absorbed. The highest release percentage of caffeine and vitamin B12 for hydrogel based on PEGDA (NP6) could reach 68.3% and 75.4%, respectively. In addition, the bound water and toxicity of the hydrogels were also investigated.

  相似文献   

17.
In this study, N‐vinylpyrrolidone(VP)/methacrylic acid (MAA) mixtures have been prepared at three different mole percents which the methacrylic acid composition around 5, 10, and 15%. Poly(N‐vinylpyrrolidone‐co‐methacrylicacid) P(VP/MAA) hydrogels irradiated at 3.4 kGy have been used for swelling and diffusion studies in water and uranyl ion solutions. The influence of dose, pH, relative amounts of monomers in MAA/VP monomer mixtures on the swelling properties have been investigated. P(VP/MAA) hydrogels were swollen in distilled water at pH 7.0. P(VP/MAA)1 hydrogel containing 36% (mole percent) methacrylic acid showed the maximum percent swelling in water. Adsorption isotherms were constructed for uranyl ions and P(VP/MAA) hydrogel systems. It has been found that P(VP/MAA) hydrogels have very high uptake of the uranyl ions succesfully in water containing uranyl ions. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
A series of intelligent hydrogels (poly(NIPA‐co‐GMA‐Dex)) were synthesized by copolymerization of N‐isopropylacrylamide (NIPA) and glycidyl methacrylate derivatized dextran (GMA‐Dex) in aqueous solution with different ratios. Their swelling behaviors at different temperatures and in different pH and ionic strengths, and their mechanical properties were studied. It has found that poly(NIPA‐co‐GMA‐Dex) hydrogels are temperature‐, pH‐, and ionic strength‐sensitive associated with the roles of the component PNIPA and GMA‐Dex, respectively. Most significantly, poly (NIPA‐co‐GMA‐Dex) hydrogels exhibit simultaneously good swelling properties and mechanical properties. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2435–2439, 2005  相似文献   

19.
Biodegradable and biocompatible copolymeric hydrogels based on sucrose acrylate, N‐vinyl‐2‐pyrrolidinone, and acrylic acid were designed and synthesized. Because of the growing importance of sugar‐based hydrogels as drug delivery systems, these new pH‐responsive sucrose‐containing copolymeric hydrogels were investigated for oral drug delivery. The sucrose acrylate monomer was synthesized and characterized. The copolymeric hydrogel was synthesized by free‐radical polymerization. Azobisisobutyronitrile (AIBN) was the free‐radical initiator employed and bismethyleneacrylamide (BIS) was the crosslinking agent used for hydrogel preparations. Homopolymeric vinyl pyrrolidone hydrogels were also prepared by the same technique. The hydrogels were characterized by differential scanning calorimetry, thermogravimetric analysis, and scanning electron microscopy. Equilibrium swelling studies were carried out in enzyme‐free simulated gastric and intestinal fluids (SGF and SIF, respectively). These results indicate the pH‐responsive nature of the hydrogels. The gels swelled more in SIF than in SGF. A model drug, propranolol hydrochloride (PPH), was entrapped in these gels and the in vitro release profiles were established separately in both enzyme‐free SGF and enzyme‐free SIF. The drug release was found to be faster in SIF. About 93 and 99% of the entrapped drug was released over a period of 24 h in SGF and SIF, respectively. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2597–2604, 2002  相似文献   

20.
A pH‐sensitive composite hydrogel based on poly(acrylamide‐co‐acrylic acid)/graphite was prepared by solution polymerization process in presence of redox initiator potassium persulfate/N,N,N′,N′‐tetramethylethylenediamine and cross‐linker (ethylene glycol dimethylacrylate). The structures of the hydrogels were confirmed using Fourier transform infrared, X‐ray diffraction, and scanning electron microscopy (SEM) study. Tensile strengths of the hydrogels were determined by using a universal tensile machine, whereas the electrical conductivities of the hydrogels were evaluated using Four‐probe method. The influence of cross‐linker, graphite content, and temperature on the conductivity of the hydrogel was also investigated. The bending behavior of the conducting hydrogels was investigated by exposing the hydrogels under electric field in aqueous medium. By studying the swelling ratio of the polymer synthesized under different conditions, optimization conditions were found for a polymer with the highest swelling ratio. Also, the hemolytic potentiality test revealed that prepared hydrogels are biocompatible in nature. POLYM. COMPOS., 35:27–36, 2014. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号