首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Montmorillonite (MMT)–multiwalled carbon nanotube (MWCNT) hybrids were prepared in different weight ratios by simple dry grinding method and characterized. Subsequently, MMT–MWCNT (1:1) hybrid was used as reinforcing filler in developing thermoplastic polyurethane (TPU) nanocomposites by solution blending method. Thermogravimetric analysis showed that 0.25 wt% hybrid‐loaded TPU nanocomposite exhibited maximum enhancement of 31°C corresponding to 50 wt% loss in thermal stability when compared with neat TPU. Differential scanning calorimetry of this composite also indicated that its crystallization and melting temperatures are enhanced by 37 and 13°C, respectively. Mechanical data showed that tensile strength and Young's modulus of 0.50 wt% filled TPU were maximum improved by 57 and 87.5%, respectively. Dynamic mechanical analysis (DMA) measurements indicated 174% (50°C) improvement in storage modulus of 0.50 wt% hybrid‐loaded TPU. Such improvements in thermal and mechanical properties have been attributed to homogeneous dispersion, strong interfacial interaction, and synergistic effect. POLYM. COMPOS., 37:1775–1785, 2016. © 2014 Society of Plastics Engineers  相似文献   

2.
In the past few years, layered double hydroxides (LDHs) with monolayer structure have been much studied for the development of polymer nanocomposites. LDHs with intercalated stearate anions form a bilayer structure with increased interlayer spacing and are expected to be better nanofillers in polymers. In the work reported, thermoplastic polyurethane (PU)/stearate‐intercalated LDH nanocomposites were prepared by solution intercalation and characterized. X‐ray diffraction and transmission electron microscopy confirmed the exfoliation at lower filler loading followed by intercalation at higher filler loading in PU matrix. As regards mechanical properties, these nanocomposites showed maximum improvements in tensile strength (45%) and elongation at break (53%) at 1 and 3 wt% loadings. Maximum improvements in storage and loss moduli (20%) with a shift of glass transition temperature (15 °C) and an increase in thermal stability (32 °C) at 50% weight loss were observed at 8 wt% loading in PU. Differential scanning calorimetry showed a shift of melting temperature of the soft segment in the nanocomposites compared to neat PU, possibly due to the nucleating effect of stearate‐intercalated LDH on the crystal structure of PU. All these findings are promising for the development of mechanically improved, thermally stable novel PU nanocomposites. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
An efficient approach has been applied to assemble MgAl layered double hydroxide onto pristine carbon nanotubes using sodium dodecylsulfate. The assembling process and formation of such hybrid nanostructures were established using X‐ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and high‐resolution transmission electron microscopy. Subsequently, the hybrid was used as nanofiller in the development of high‐performance thermoplastic polyurethane/acrylonitrile butadiene rubber (1:1 w/w) blend nanocomposites. Measurements of mechanical and dynamic mechanical properties show that tensile strength, elongation at break and storage modulus improve significantly by 171%, 1.8 times and 241% in a blend with 0.50 wt% loading of hybrid filler. Thermogravimetric analysis shows that the thermal stability of the blend with 0.50 wt% hybrid filler compared to neat material is maximally improved by 20 °C determined at 50% weight loss. Differential scanning calorimetry shows the maximum enhancement in melting temperature (7 °C) and crystallization temperature (31 °C) due to significant nucleation efficiency of the filler, homogeneous dispersion and strong interfacial interaction between polymer matrix and filler. © 2015 Society of Chemical Industry  相似文献   

4.
In this study, aromatic sulfonated poly(sulfone‐pyridine‐amide) (S‐PSPA) has been prepared via polycondensation of sulfonated monomer 1‐(4‐thiocarbamoylaminophenyl‐sulfonylphenyl)thiourea and 2,6‐pyridinedicarboxylic acid at high temperature. Mechanically robust and thermally stable hybrid membranes were prepared using non‐functional and functional multiwalled carbon nanotube (MWCNT) i.e., S‐PS/S‐PSPA/MWCNT‐NF and S‐PS/S‐PSPA/MWCNT via solution blending. Field emission scanning electron microscopy exhibited porous membrane structure for 0.1–0.5 wt% nanotube loading, whereas well‐aligned functional MWCNT were observed in 1 wt% loaded sample. Increasing the functional nanotube content from 0.1 to 1 wt% increased tensile strength of functional S‐PS/S‐PSPA/MWCNT hybrids from 62.19 to 65.29 MPa compared with non‐functional hybrid (53.34 MPa) and neat S‐PS/S‐PSPA. 10% decomposition temperature of S‐PS/S‐PSPA/MWCNT 0.1–1 was in the range 491–502°C, while S‐PS/S‐PSPA/MWCNT‐NF showed relatively lower thermal stability (T10 489°C). Glass transition temperature of functional S‐PS/S‐PSPA/MWCNT was also higher (201–243°C) relative to S‐PS/S‐PSPA/MWCNT‐NF (194°C). Furthermore, functional MWCNT‐based membranes had higher ion exchange capacity (IEC) 3.2–3.6 mmol/g and lower activation energies (95–36 kJ/mol). Novel functional membranes also revealed high proton conductivity 1.68–2.55 S/cm in a wide range of humidity at 80°C higher than that of perfluorinated Nafion® membrane (1.1 ×10?1 S/cm) at 80°C (94% RH). POLYM. ENG. SCI., 55:1776–1786, 2015. © 2014 Society of Plastics Engineers  相似文献   

5.
Homogeneous multiwalled carbon nanotube/montmorillonite hybrid filler (HMM) dispersion was prepared by co‐ultrasonication and was subsequently used to prepare ethylene‐co‐vinyl acetate (EVA) nanocomposites by solution blending method. XRD and TEM analysis of HMM confirm significant interaction between the montmorillonite (MMT) layers and multiwalled carbon nanotubes (MWCNT) in line with previous reports. Analysis of the nanocomposites shows the constituent fillers to be homogeneously dispersed in EVA matrix. Mechanical properties of neat EVA are remarkably improved with HMM content up to 3 wt% followed by reversion. Maximum improvement observed in tensile strength, elongation at break, and toughness are 424%, 109%, and 1122%, respectively. Results show maximum thermal stability at 4 wt% and best dielectric response at 1 wt% HMM content. Exceptional mechanical and dielectric properties of EVA nanocomposites attained may be attributed to homogeneous dispersion of fillers and improved polymer–filler interaction. Comparison shows excellent synergy between MWCNT and MMT towards mechanical reinforcement of EVA. POLYM. ENG. SCI., 58:1155–1165, 2018. © 2017 Society of Plastics Engineers  相似文献   

6.
The present investigation aims to develop thermally stable electromagnetic interference shielding materials from polysulfone (PSU) nanocomposites filled with multiwall carbon nanotubes (MWCNT) or carbon nanofibers (CNF). The effect of filler type and their structural features such as aspect ratio (length/diameter) and wall integrity on the different properties of nanocomposites has been investigated. Nanocomposite filled with MWCNT/CNF exhibits higher thermal stability compared with the neat PSU matrix. The onset degradation temperature of PSU at 532°C enhances to 537 and 538°C at 3 wt% MWCNT and 3 wt% CNF loading, respectively. CNFs filled nanocomposite shows higher electromagnetic interference shielding effectiveness (EMISE) compared with MWCNT filled one at the same filler loading. Compared with MWCNT, CNF imparts lower electrical percolation threshold. Nanocomposite filled with MWCNTs possesses percolation threshold at 1.5 wt%, whereas nanocomposite filled with CNFs possesses the same at 0.9 wt%. The EMISE of 20–45 dB are obtained from only 1 mm thick CNF filled nanocomposites from the filler loading 3 to 10 wt%. This value of EMISE above 40 dB suggests that the prepared nanocomposite can be used as an effective lightweight EMI shielding material for high frequency (8.2–12.4 GHz) applications, where high thermal stability is required. POLYM. COMPOS. 36:566–575, 2015. © 2014 Society of Plastics Engineers  相似文献   

7.
A new synthetic route was applied to develop carbon nanofiber (CNF)–layered double hydroxide (LDH) hybrid through a noncovalent assembly using sodium dodecyl sulfate as bridging linker between magnesium–aluminum LDH and CNF and then characterized. Furthermore, this hybrid was used as nanofiller in thermoplastic polyurethane–acrylonitrile butadiene rubber (TN; 1:1 w/w) blend. Mechanical measurements showed that the 0.50 wt % hybrid loaded TN blend exhibited the maximum improvements in the elongation at break, tensile strength, and storage modulus of 1.51 times and 167 and 261% (25 °C), respectively. Differential scanning calorimetric analysis and thermogravimetric analysis showed maximum improvements in the melting temperature (5 °C), crystallization temperature (17 °C), and thermal stability (14 °C) in the 0.50 wt % surfactant modified carbon nanofiber–LDH loaded blend compared to the neat blend. Such enhancement in the properties of the TN nanocomposites could be attributed to the homogeneous dispersion, strong filler–blend interfacial interaction, and synergistic effect. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43470.  相似文献   

8.
The main motivation of the present work was to fabricate novel multifunctional polymer‐based nanocomposites. The nanocomposites embedded with multi‐walled carbon nanotube‐boehmite (MWCNT‐boehmite) were prepared via hot pressure casting technique. The MWCNT coated with boehmite were synthesized by hydrothermal synthesis. Subsequently, as‐prepared MWCNT‐boehmite was added into the phthalonitrile‐terminated polyarylene ether nitriles (PEN‐t‐CN) matrix in order to benefit from the synergetic effect of MWCNT and boehmite. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) X‐ray diffraction (XRD), and Fourier transform infrared (FTIR) were employed to confirm the existence of MWCNT‐boehmite in our article. Furthermore, the structures, fracture morphologies, thermal, mechanical and dielectric properties of the nanocomposites were investigated, respectively. SEM images indicated that the MWCNT‐boehmite was homogeneously dispersed in the polymer, which acted as an essential factor to ensure good physical properties. The TGA analysis showed that the incorporation of MWCNT‐boehmite enhanced the thermal stability of the nanocomposites with initial degradation temperature (Tid) increasing from 458 to 492°C, while that of the pure PEN‐t‐CN was 439°C. The mechanical testing proved that significant enhancement of mechanical properties has been achieved. The tensile strength of PEN‐t‐CN/MWCNT‐boehmite composites with 3 wt% MWCNT‐boehmite reached the maximum (78.33 MPa), with a 41.7 % increase compared to the pure polymer. More importantly, the unique dielectric properties were systematically discussed and the results demonstrated that dielectric properties exhibited little dependency on frequency. For the incorporation of hybrid filler, the positive impact of MWCNT‐boehmite hybrid material resulted in polymer‐based nanocomposites with enhanced physical properties. POLYM. COMPOS., 36:2193–2202, 2015. © 2014 Society of Plastics Engineers  相似文献   

9.
The present work deals with the effect of stearate intercalated layered double hydroxide (St‐LDH) loadings on the morphological, mechanical, thermal, adhesive and flame retardant properties of polyurethane (PU)/St‐LDH nanocomposites prepared by the in situ polymerization method. X‐ray diffraction and transmission electron microscopy studies confirmed that exfoliation takes place at 3 wt% loading followed by intercalation at higher filler loadings in the PU matrix. The exfoliated structure has been further verified by atomic force microscopy. The measurements of stress‐strain, thermogravimetric analysis, dynamic mechanical analysis, lap shear strength and peel strength analysis showed that the nanocomposites containing 3 wt% St‐LDH exhibit excellent improvement in tensile strength (ca 175%) and log storage modulus (ca 14%), while PU/St‐LDH (5 wt%) possesses optimum improvement in glass transition temperature (ca 6 °C), lap shear strength (200%) and peel strength (130%) over neat PU. In addition, the gradual improvements in limiting oxygen index value with St‐LDH loading indicated the higher effectiveness in providing better barrier properties as well as better flame retardant behavior. Copyright © 2012 Society of Chemical Industry  相似文献   

10.
Silicone rubber (SR)/Mg–Al layered double hydroxide (LDH) nanocomposites were prepared by the solution intercalation of SR crosslinked by a platinum‐catalyzed hydrosilylation reaction into the galleries of dodecyl sulfate intercalated layered double hydroxide (DS–LDH). X‐ray diffraction and transmission electron microscopy analysis showed the formation of exfoliated structures of organomodified LDH layers in the SR matrix. The tensile strength and elongation at break of SR/DS–LDH (5 wt %) were maximally improved by 53 and 38%, respectively, in comparison with those of the neat polymer. Thermogravimetric analysis indicated that the thermal degradation temperature of the exfoliated SR/DS–LDH (1 wt %) nanocomposites at 50% weight loss was 20°C higher than that of pure SR. Differential scanning calorimetry analysis data confirmed that the melting temperature of the nanocomposites increased at lower filler loadings (1, 3, and 5 wt %), whereas it decreased at a higher filler loading (8 wt %). The relative improvements in the solvent‐uptake resistance behavior of the SR/DS–LDH nanocomposites were also observed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
The well dispersed multiwalled carbon nanotube (MWCNT)/epoxy composites were prepared by functionalization of the MWCNT surfaces with glycidyl methacrylate (GMA). The morphology and thermal properties of the epoxy nanocomposites were investigated and compared with the surface characteristics of MWCNTs. GMA‐grafted MWCNTs improved the dispersion and interfacial adhesion in epoxy resin, and enhanced the network structure. The storage modulus of 3 phr GMA‐MWCNTs/epoxy composites at 50°C increased from 0.32 GPa to 2.87 GPa (enhanced by 799%) and the increased tanδ from 50.5°C to 61.7°C (increased by 11.2°C) comparing with neat epoxy resin, respectively. Furthermore, the thermal conductivity of 3 phr GMA‐MWCNTs/epoxy composite is increased by 183%, from 0.2042 W/mK (neat epoxy) to 0.5781 W/mK. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
13.
In order to prepare the bio‐based polymeric materials, a gallic acid epoxy resin (GA‐ER) is synthesized by using biodegradable gallic acid, and the nanocomposites of GA‐ER/glycidyl methacrylate (GMA)/multiwalled carbon nanotubes (MWCNTs) were prepared by dual hybrid cationic ring‐opening reaction. Differential scanning calorimetry (DSC) results show that the curing reaction temperature of the nanocomposites is between 150 and 225°C. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results suggest that MWCNTs are homodispersing in the GA‐ER/GMA matrix when the MWCNTs content is not more than 1.0 wt%. The glass transition temperature of the nanocomposite with 0.5 wt% MWCNTs is 9.3°C higher than that of pure resin system. The initial thermal degradation temperature and degradation activation energies Ea of the nanocomposite with 1.0 wt% MWCNTs is 10°C and 68.6 kJ/mol higher than that the pure resin system, respectively. POLYM. COMPOS., 37:3093–3102, 2016. © 2015 Society of Plastics Engineers  相似文献   

14.
Biodegradable poly(butylene succinate‐co‐ethylene glycol) (PBSG)/multiwalled carbon nanotube (MWCNT) nanocomposites were successfully prepared through physical blending and silication between PBSG and acyl aminopropyltriethoxysilane functionalized multiwalled carbon nanotube (MWCNT‐APTES). Nuclear magnetic resonance (NMR) spectra observations revealed that the PBSG chains were covalently attached to the MWCNT‐APTES by hydrolysis. PBSG/MWCNT‐APTES nanocomposites after hydrolysis showed excellent interfacial compatibility between PBSG and MWCNT‐APTES, which was helpful for the dispersion of MWCNT in the PBSG matrix. The incorporation of MWCNT‐APTES accelerated the crystallization of PBSG in the nanocomposites for both approaches of physical blending and hydrolysis due to the heterogeneous nucleation effect of MWCNT while the crystal structure of PBSG was remained. Furthermore, the crystallization rate of PBSG in PBSG/MWCNT‐APTES nanocomposites after hydrolysis was slower than that in the nanocomposite by physical blend. The tensile strength and modulus of the nanocomposites increased about 6% and 11% with the addition of only 1 wt% MWCNT‐APTES compared with that of neat PBSG, and was larger for the PBSG/MWCNT‐APTES nanocomposites after hydrolysis. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

15.
The homogeneous dispersion of nanofillers in polymer matrices to form polymer nanocomposites remains a challenge in the development of high‐performance polymer materials for various applications. In the work reported, a stearate ion‐modified Mg? Al layered double hydroxide (St‐LDH) as nanofiller was incorporated in a silicone rubber (SR) matrix by solution intercalation and subsequently characterized. X‐ray diffraction and transmission electron microscopy studies confirm the formation of a predominantly exfoliated dispersion of St‐LDH layers of 75–100 nm in width and about 1–2 nm in thickness in the SR. Thermogravimetric analysis shows that the thermal degradation temperature of the exfoliated SR/St‐LDH (1 wt%) nanocomposites is about 80 °C higher than that of pure SR. Differential scanning calorimetric studies indicate that the melting and crystallization temperatures are higher by 4 and 10 °C for 5 and 8 wt% St‐LDH‐loaded SR nanocomposites compared to neat SR. A significant improvement of 97% in tensile strength and 714% in storage modulus and a reduction of 82% in oxygen permeability have been achieved at 3 wt% St‐LDH loading in SR. Copyright © 2011 Society of Chemical Industry  相似文献   

16.
Layered double hydroxide (LDH) is a new type of nanofiller, which improves the physicochemical properties of the polymer matrix. In this study, 1, 3, 5, and 8 wt % of dodecyl sulfate‐intercalated LDH (DS‐LDH) has been used as nanofiller to prepare a series of thermoplastic polyurethane (PU) nanocomposites by solution intercalation method. PU/DS‐LDH composites so formed have been characterized by X‐ray diffraction and transmission electron microscopy analysis which show that the DS‐LDH layers are exfoliated at lower filler (1 and 3 wt %) loading followed by intercalation at higher filler (8 wt %) loading. Mechanical properties of the nanocomposite with 3 wt % of DS‐LDH content shows 67% improvement in tensile strength compared to pristine PU, which has been correlated in terms of fracture behavior of the nanocomposites using scanning electron microscope analysis. Thermogravimetric analysis shows that the thermal stability of the nanocomposite with 3 wt % DS‐LDH content is ≈ 29°C higher than neat PU. Limiting oxygen index of the nanocomposites is also improved from 19 to 23% in neat PU and PU/8 wt% DS‐LDH nanocomposites, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Fine powders of montmorillonite (MMT)/multiwalled carbon nanotube (MWCNT) hybrids have been prepared by simple grinding of MWCNT with MMT in different weight ratios of MMT to MWCNT (10 : 1, 6 : 1, 3 : 1, 1 : 1, and 1 : 3) and characterized by wide‐angle X‐ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. These studies have established the formation of the exfoliated structures of MMT/MWCNT (1 : 1) hybrid, in which MWCNTs exist in the state of single nanotubes that are adsorbed and intercalated on the surface and in between the MMT nanoplatelets. The hybrid has subsequently been used as reinforcing nanofiller in the development of high‐performance silicone rubber (SR) nanocomposites, and a remarkably synergistic effect of MMT and MWCNT on SR properties has been observed. The tensile strength of SR containing 1% w/w of the MMT/MWCNT (1 : 1) hybrid is improved by 215%, whereas the SR filled with MMT or MWCNT alone showed an improvement of 46 and 25%, respectively, over that of unfilled SR. In addition, SR/1 wt % MMT/MWCNT (1 : 1) nanocomposites also exhibit the maximum improvement in thermal stability corresponding to 10% weight loss by 70°C, crystallization and melting temperatures increased by 8 and 6°C as inferred from thermogravimetric analysis and differential scanning calorimetry, respectively. This approach is promising for the preparation of high‐performance SR nanocomposites by using different dimension nanofillers together. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41818.  相似文献   

18.
Polypropylene (PP)/multiwalled carbon nanotube (MWCNT) composites are prepared by implementing noncovalent compatibilization. The compatibilization method involves PP matrix functionalization with pyridine (Py) aromatic moieties, which are capable of π–π interaction with MWCNT sidewalls. Imaging revealed that the addition of 25 wt% of PP‐g‐Py to neat PP is capable of drastically reducing nanotube aggregate size and amount, compared to a matrix containing the equivalent amount of a maleated PP (PP‐g‐MA). Raman spectroscopy confirms improved polymer/nanotube interaction with the PP‐g‐Py matrix. The electrical percolation threshold appears at a MWCNT loading of approximately 1.2 wt%, and the maximum value of the electrical conductivity achieved is 10−2 S/m, irrespective of the functionalization procedure. The modulus of the composites is improved with the addition of MWCNTs. Furthermore, composites functionalized with Py display significant improvements in composite ductility compared with their maleated counterparts because of the improved filler dispersion. POLYM. COMPOS., 37:2794–2802, 2016. © 2015 Society of Plastics Engineers  相似文献   

19.
This study describes the preparation of polycarbonate (PC)/multiwalled carbon nanotube (MWCNT) composites by melt processing the PC and PC/MWCNT master batch at 260°C. The PC/MWCNT master batch was prepared using ultrasonic mixing the carboxylic acid containing MWCNT and PC in a tetrahydrofuran (THF) solution. The HRTEM images of PC/MWCNT master batch and PC/MWCNT nanocomposites show that the MWCNT is well separated and uniformly distributed in the PC matrices. Mechanical properties of the fabricated nanocomposites measured by dynamic mechanical analysis indicate significant improvements in the storage modulus when compared with that of pure PC matrix. The conductivities of 2 and 5 wt% PC/MWCNT nanocomposites are more than four and seven orders in magnitude higher than that of PC without MWCNT, respectively. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

20.
This study has reported the preparation of polycarbonate (PC)/graphene nanoplate (GNP)/multiwall carbon nanotube (MWCNT) hybrid composite by simple melt mixing method of PC with GNP and MWCNT at 330°C above the processing temperature of the PC (processing temperature is 280°C) followed by compression molding. Through optimizing the ratio of (GNP/MWCNT) in the composites, high electromagnetic interference shielding effectiveness (EMI SE) value (∼21.6 dB) was achieved at low (4 wt%) loading of (GNP/MWCNT) and electrical conductivity of ≈6.84 × 10−5 S.cm−1 was achieved at 0.3 wt% (GNP/MWCNT) loading with low percolation threshold (≈0.072 wt%). The high temperature melt mixing of PC with nanofillers lowers the melt viscosity of the PC that has helped for better dispersion of the GNPs and MWCNTs in the PC matrix and plays a key factor for achieving high EMI shielding value and high electrical conductivity with low percolation threshold than ever reported in PC/MWCNT or PC/graphene composites. With this method, the formation of continuous conducting interconnected GNP‐CNT‐GNP or CNT‐GNP‐CNT network structure in the matrix polymer and strong π–π interaction between the electron rich phenyl rings and oxygen atom of PC chain, GNP, and MWCNT could be possible throughout the composites. POLYM. COMPOS., 37:2058–2069, 2016. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号