首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G.H. Zheng  L. Wang  Z.H. Kang 《Renewable Energy》2010,35(12):2910-2913
NH4+, which is normally the integrant in organic wastewater, such as Tofu wastewater, is an inhibitor to hydrogen production by anoxygenic phototrophic bacterium. In order to release inhibition of NH4+ to biohydrogen generation by Rhodobacter sphaeroides, a glutamine auxotrophic mutant R. sphaeroides TJ-0803 was obtained by mutagenizing with ethyl methane sulfonate. The mutant could generate biohydrogen efficiently in the medium with high NH4+ concentration, because the inhibition of NH4+ to nitrogenase was released. Under suitable conditions, TJ-0803 could effectively produce biohydrogen from tofu wastewater, which commonly containing 50–60 mg L?1 NH4+, and the generation rate was increased by more than 100% compared with that from wild-type R. sphaeroides.  相似文献   

2.
Hydrogen production from the wastewater of tofu factory was examined by using anoxygenic phototrophic bacterium Rhodobacter sphaeroides immobilized in agar gels. The maximum rate of hydrogen production observed from the wastewater was 2.1 l h−1 m2 gel which was even slightly higher than that from a glucose medium (as control). The hydrogen production lasted up to 50 h. The yield of hydrogen was 1.9 ml⧸mlwastewater or 0.24 ml⧸mg carbohydrates contained in the wastewater. This yield corresponds to53% or 65% of that from the glucose medium, according to the different expressions of the yield. The TOC (total organic carbon) removal ratio in 85 h reached 41% which was comparable to that from the glucose medium. The immobilization protected the bacterium from the inhibitory effect of ammonium ion. © 1999 International Association for Hydrogen Energy. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

3.
The present study demonstrates the feasibility of a two-phase biorefinery process applied to waste substrates producing ethanol rich effluents. The process includes a dark fermentation step followed by photo fermentation and it is able to optimize hydrogen production from waste biomass. The study was conducted using winery wastewater as feedstock. The results indicate that no additional treatments are required when an appropriate dilution of the initial waste is applied. Microbial consortia contained in the winery wastewater promoted a fermentative ethanol pathway. The ethanol rich effluent was converted into hydrogen by phototrophic microorganisms. Despite the presence of inhibiting compounds, the adoption of a mixed phototrophic culture allowed to obtain good results in terms of hydrogen production. Specifically, up to 310 mLH2 gCODconsumed?1 were obtained in the photo fermentative stage. The effectiveness of ethanol rich dark fermentation effluents for hydrogen production enhancement was demonstrated. Noteworthy, polyhydroxybutyrate was also produced during the experiments. The work faces two of the major challenges in the sequential dark fermentation and photo fermentation technology applied to real waste substrates: the minimization of pre-treatments and the enhancement of the hydrogen production yields using ethanol rich DFEs.  相似文献   

4.
Biohydrogen production is a cheap and clean way to obtain hydrogen gas. In subtropical countries such as Brazil the average temperatures of 27 °C can favor the hydrogen producing bacteria growth. A mixed culture was obtained from a subtropical sludge treating brewery wastewater and anaerobic batch reactors were fed with glucose, sucrose, fructose and xylose in low concentrations (2.0, 5.0 and 10.0 g L−1) at 37 °C, initial pH 5.5 and headspace with N2 (99%) to maintain the anaerobic conditions. The inoculum was a subtropical granulated sludge from UASB (Upflow Anaerobic Sludge Blanket) reactor treating brewery wastewater. The higher H2 yields were obtained in reactors operated with 2 and 5 g L−1 of fructose and they were 1.5 mol H2 mol−1 of fructose and 1.3 mol H2 mol−1 of sucrose, respectively. The volatile fatty acids (VFA) generated at the end of operation were, predominantly, butyric and acetic acid, indicating the favoring of the metabolic route of hydrogen generation by the consortium of anaerobic bacteria from the brewery wastewater. Biomolecular analyses revealed the predominance of hydrogen producing bacteria from Firmicutes phylum distributed in the families Streptococcaceae, Veillonellaceae and uncultured bacteria. These results confirm future applications of subtropical sludges with agroindustrial wastewaters containing low concentrations of sugars on hydrogen generation.  相似文献   

5.
Biohydrogen production from cassava starch wastewater was evaluated in anaerobic sequencing batch biofilm reactor (AnSBBR) using different inoculum (mixed cultures from naturally fermented wastewater and anaerobic sludge thermally treated) and feeding strategies (batch and fed-batch). The highest hydrogen productivity (2.4 LH2 L−1 d−1) and yield (11.7 molH2 kg−1Carbohydrates) were verified in low and intermediate organic load rates (12 and 14 g L−1 d−1) and longer cycle time (4 h), respectively. The productivity was favored by fed-batch strategy, and yield by batch. The hydrogen production was verified in both inoculum sources. However, in the assays inoculated from naturally fermented wastewater, with higher organic load rate (18 g L−1 d−1) and intermediate cycle time (3 h) no hydrogen was observed, regardless the feeding strategy, indicating that the inhibitory effects of the indigenous microorganisms present in cassava starch wastewater were more expressive in these conditions. The operational conditions applied to hydrogen production in AnSBBR from cassava starch wastewater may influence the microflora development in the reactor. In this study three possible scenarios were verified: hydrogen-producing bacteria (HPB) growth; hydrogen-producing bacteria inhibition or coexistence between ones and lactic acid bacteria (LAB), which are autochthones of this wastewater.  相似文献   

6.
Treatment of highly concentrated organic wastewater is characterized as cost-consuming. The conventional technology uses the anaerobic-anoxic-oxic process (A2/O), which does not produce hydrogen. There is potential for energy saving using hydrogen utilization associated with wastewater treatment because hydrogen can be produced from organic wastewater using anaerobic fermentation. A 50 m3 pilot bio-reactor for hydrogen production was constructed in Shandong Province, China in 2006 but to date the hydrogen produced has not been utilized. In this work, a technical-economic model based on hydrogen utilization is presented and analyzed to estimate the potential improvement to a citric wastewater plant. The model assesses the size, capital cost, annual cost, system efficiency and electricity cost under different configurations. In a stand-alone situation, the power production from hydrogen is not sufficient for the required load, thus a photovoltaic array (PV) is employed as the power supply. The simulated results show that the combination of solar and bio-hydrogen has a much higher cost compared with the A2/O process. When the grid is connected, the system cost achieved is 0.238 US$ t−1 wastewater, which is lower than 0.257 US$ t−1 by the A2/O process. The results reveal that a simulated improvement by using bio-hydrogen and a FC system is effective and feasible for the citric wastewater plant, even when compared to the current cost of the A2/O process. In addition, lead acid and vanadium flow batteries were compared for energy storage service. The results show that a vanadium battery has lower cost and higher efficiency due to its long lifespan and energy efficiency. Additionally, the cost distribution of components shows that the PV dominates the cost in the stand-alone situation, while the bio-reactor is the main cost component in the parallel grid.  相似文献   

7.
Photocatalytic water splitting is one of the prospective green energy technologies, particularly, for hydrogen production from wastewater under natural sunlight irradiation. Herein, we report experimental data on the synthesis and characteristics of the biomass activated carbon (b-AC)-anchored anatase titanium oxide (a-TiO2) nanocomposites, which were ultrasonically prepared by using the sol-gel-grown a-TiO2 spherical nanoparticles and the KOH-activated citron-derived b-AC nanoflakes. The a-TiO2/b-AC nanocomposites displayed an aggregated morphology with the interconnected spherical nanoparticles, and they showed a high surface area (495 m2/g). When using a-TiO2/b-AC as a photocatalyst for hydrogen production from sulphide wastewater (0.15 M) under solar irradiation (740 W/m2), the superb hydrogen production efficiency was achieved up to 400 mL/h. The results suggest the a-TiO2/b-AC nanocomposites to hold an ample potential for photocatalytic hydrogen production from the wastewater.  相似文献   

8.
The quantitative relationship between sulfate reducing bacteria (SRB) and hydrogen (H2) production from sulfate (SO42−) and ferrous [Fe(II)] enriched wastewater was investigated. Both Fe(II) (0–11,600 mg/L) and SO42− (0–20,000 mg/L) improved the H2 production efficiency from wastewater. The H2 yields were increased up to 1.9 mol H2/mol glucose in 580–1750 mg Fe(II)/L and 1000–3000 mg SO42−/L enriched wastewater at pH 5.8–6.2. Quantitative Fluorescence In Situ Hybridization (FISH) analyses revealed that the specific sulfate reducing activities (SSRA) were increased from 0.08 and 0.06 to 0.16 and 0.21 g TS/g SRB h in response to variations in sulfate concentration from 300–20,000 mg/L at pH 5.8 and 6.2, respectively. H2 production was not influenced by low SSRA (≤0.1 g TS/g SRB h), which was independent of pH variation. The results demonstrated that the SSRA and Fe(II) concentration can significantly influence on the biological H2 production from SO42− and Fe(II) containing wastewater.  相似文献   

9.
Hydrogen gas was produced from metal plating wastewater by electro hydrolysis. Wastewater contains chrome, copper and nickel metals which can accelerate the production of hydrogen gas. Effects of kind of metals, the voltage and reaction time on percent hydrogen gas (HGP) were investigated. After application of different DC voltages on each metallic wastewater, percent hydrogen gas (HGP), cumulative hydrogen gas volume (CHGV), hydrogen gas formation rate (HFR) and total organic carbon (TOC) removal were also evaluated. Hydrogen gas percent was obtained as %99 at 4 V for chrome plating wastewater while percent hydrogen gas was achieved as 50% H2 gas at 4 V for copper and nickel metal plating wastewater. Maximum CHGV achieved with 4 V DC voltage for all metal plating wastewater. Maximum CHGV (4000 mL), HFR (985 mL H2 d−1) and percent hydrogen gas (99%) was observed with chrome plating wastewater at 4 V DC voltage. Hydrogen gas produced from chrome metal plating wastewater using electro hydrolysis method can be efficiently used for fuel cells as a source due to nearly pure hydrogen gas.  相似文献   

10.
Wastewater treatment is essential to shield the environment. The production of H2 is substantial for prospering its applications in diversified sectors; hence the study of wastewater treatment for H2 production is accomplished. Various technologies have been developed and studied considering the potential of wastewater to generate hydrogen-rich gas. These technologies have different mechanisms, diversified setups, and processes. Perhaps these technologies are proven to be exceptional exposures for hydrogen production. Fortunately, a valuable contribution to the environment and the H2 economy is that some technological processes have been promoted to synthesize H2 from lab scale to pilot scale. Contemplating such comprehensive exposure to H2 synthesis from wastewater, the critical information of eight emerging technologies, including their mechanism and reaction parameters influencing the process, pros, cons, and future developmental scopes, are described in this review by classifying them into three different classes, namely light-dependent technologies, light-independent technologies, and other technologies.  相似文献   

11.
The production of hydrogen from soft-drink wastewater in two upflow anaerobic packed-bed reactors was evaluated. The results show that soft-drink wastewater is a good source for hydrogen generation. Data from both reactors indicate that the reactor without medium containing macro- and micronutrients (R2) provided a higher hydrogen yield (3.5 mol H2 mol−1 of sucrose) as compared to the reactor (R1) with a nutrient-containing medium (3.3 mol H2 mol−1 of sucrose). Reactor R2 continuously produced hydrogen, whereas reactor R1 exhibited a short period of production and produced lower amounts of hydrogen. Better hydrogen production rates and percentages of biogas were also observed for reactor R2, which produced 0.4 L h−1 L−1 and 15.8% of H2, compared to reactor R1, which produced 0.2 L h−1 L−1 and 2.6% of H2. The difference in performance between the reactors was likely due to changes in the metabolic pathway for hydrogen production and decreases in bed porosity as a result of excessive biomass growth in reactor R1. Molecular biological analyses of samples from reactors R1 and R2 indicated the presence of several microorganisms, including Clostridium (91% similarity), Enterobacter (93% similarity) and Klebsiella (97% similarity).  相似文献   

12.
Microbial electrolysis cells (MECs) use exoelectrogenic microorganisms to convert organic matter into H2, although yields can vary significantly with environmental conditions, likely due to variations in microbial communities. This study was undertaken to better understand how microbial communities affect reactor function. Using wastewater as inoculum, 15 MEC reactors were operated for >50 days and subsequently five reactors were selected for further analysis. Solution (26 mL) was collected every 3–4 days for DNA extraction. DNA was hybridized to GeoChip, a comprehensive functional gene array, to examine differences in the reactor microbial communities. A large variety of microbial functional genes were observed in all reactors. Performances ranged from poor (0.1 ± 0.1 mL) to high (12.2 ± 1.0 mL) H2 production, with a maximum yield of 5.01 ± 0.43 mol H2/molglucose. The best performance was associated with higher cytochrome c genes, considerably higher exoelectrogenic bacteria (such as Shewanella, Geobacter), less methanogens and less hydrogen-utilizing bacteria. The results confirmed the possibility to obtain an effective community for hydrogen production using wastewater as inoculum. Not like fermentation, hydrogen production was significantly controlled by electron transporting process in MECs. GeoChip findings suggested that biofilm formation can be highly stochastic and that presence of dissimilatory metal-reducing bacteria and antagonistic methanogens is critical for efficient hydrogen production in MEC reactors.  相似文献   

13.
In this study, the feasibility of hydrogen production from alcohol distillery wastewater containing high potassium and sulfate was investigated using an anaerobic sequencing batch reactor (ASBR). The seed sludge taken from an anaerobic tank treating the distillery wastewater was boiled for 15 min before being fed to the ASBR. The ASBR system was operated under different feed chemical oxygen demand (COD) values and different COD loading rates at a mesophilic temperature of 37 °C, a controlled pH at 5.5, and a cycle time of 6 cycles per day. When the studied ASBR was operated under the best conditions (providing a maximum hydrogen production efficiency) of a feed COD of 40,000 mg/l, a COD loading rate of 60 kg/m3 d, and a hydraulic retention time of 16 h, the produced gas was found to contain 34.7% H2 and 65.3% CO2, without any methane being detected. Under these best conditions, the specific hydrogen production rate (SHPR) of 270 ml H2/g MLVSS d (or 3310 ml H2/l d), and hydrogen yield of 172 ml H2/g COD removed, were obtained. When the feed COD exceeded 40,000 mg/l, the process performance in terms of hydrogen production decreased because of the potassium and sulfate toxicity.  相似文献   

14.
The biological production of hydrogen from cassava starch wastewater (CSW) was evaluated in an anaerobic fixed-bed reactor (UAFBR). The assays were carried out to evaluate the effects of organic loading rate (OLR) increase and strategies of inoculation (AS – anaerobic sludge thermally treated and NF – naturally fermented cassava starch wastewater) on UAFBR performance. The OLR increase (10–20 g L−1 d−1) associated with hydraulic retention time (HRT) decrease (4–2 h) improved the volumetric hydrogen production rate (VHPR, from 229 to 550 mLH2.L−1.d−1), molar hydrogen flow rate (MHFR, from 1.0 to 2.5 mmolH2.h−1) and hydrogen yield (HY, from 0.2 to 0.3 molH2.mol−1Carb) from CSW due to increase in substrate availability. Both inoculation alternatives (AS and NF) were effective for the selection of acidogenic microorganisms, which demonstrates that NF could be considered a simple and economic alternative for the acquisition of inoculum for continuous acidogenic reactors. Hydrogen production decreased after 10 days of operation when the specific organic loading rate (SOLR) reached reduced values (<1 gCarb.g−1VSS.d−1), which impairs hydrogen production. For all assays, methane was present in the biogas after the 20th day of operation mainly due to biomass accumulation, which alters the biota of the reactor. Although many factors could influence the process performance in UAFBR for the production of biohydrogen, the accumulation of biomass have been pointed as the main factor in the determination of the production time, thus demanding the implementation of systematic practices to remove the excess of biomass to maintain the SOLR in levels adequate for hydrogen production.  相似文献   

15.
Batch production of biohydrogen from cassava wastewater pretreated with (i) sonication, (ii) OPTIMASH BG® (enzyme), and (iii) α-amylase (enzyme) were investigated using anaerobic seed sludge subjected to heat pretreatment at 105 °C for 90 min. Hydrogen yield at pH 7.0 for cassava wastewater pretreated with sonication for 45 min using anaerobic seed sludge was 0.913 mol H2/g COD. Results from pretreatment with OPTIMASH BG® at 0.20% and pH 7 showed a hydrogen yield of 4.24 mol H2/g COD. Superior results were obtained when the wastewater was pretreated with α-amylase at 0.20% at pH 7 with a hydrogen yield of 5.02 mol H2/g COD. In all cases, no methane production was observed when using heat-treated sludge as seed inoculum. Percentage COD removal was found to be highest (60%) using α-amylase as pretreatment followed by OPTIMASH BG® at 54% and sonication (40% reduction rate). Results further suggested that cassava wastewater is one of the potential sources of renewable biomass to produce hydrogen.  相似文献   

16.
We are developing a process to produce biohydrogen from palm oil mill effluent. Part of this process will involve photohydrogen production from volatile fatty acids under low light conditions. We sought to isolate suitable bacteria for this purpose from Songkhla Lake in Southern Thailand. Enrichment for phototrophic bacteria from 34 samples was conducted providing acetate as a major carbon source and applying culturing conditions of anaerobic-low light (3000 lux) at 30 °C. Among the independent isolates from these enrichments 19 evolved hydrogen with productivities between 4 and 326 ml l−1 d−1. Isolate TN1 was the most efficient producer at a rate of 1.85 mol H2 mol acetate−1 with a light conversion efficiency of 1.07%. The maximum hydrogen production rate for TN1 was determined to be 43 ml l−1 h−1. Environmentally desirable features of photohydrogen production by TN1 included the absence of pH change in the cultures and no detectable residual CO2.  相似文献   

17.
The aim of this study was to evaluate the performance of thermophilic hydrogenesis coupled with mesophilic methanogenesis in which the effluent was recycled to the hydrogen reactor for starch wastewater treatment. With this system, the hydrogen production rate and yield were 3.45 ± 0.25 L H2/(L·d) and 5.79 ± 0.41 mmol H2/g CODadded respectively, and thus higher than the values of the control group without methanogenic effluent recycling. In addition, relatively higher contents of acetate and butyrate were obtained in the hydrogen reactor with recirculation. The methane reactors were operated with the effluent from the hydrogen reactor, and methane yield was stabilized at 0.21–0.23 L/g CODremoval in both. Analysis of the microbial communities further showed that methanogenic effluent recirculation enriched microbial communities in the hydrogen reactor. Two species of bacteria effective in hydrogenesis, Thermoanaerobacterium thermosaccharolyticum and Clostridium thermosaccharolyticum, dominated during hydrogen production, whereas archaea belonging to Euryarchaeota were detected and cultured in the methane reactor. The recycled effluent supplied alkaline substrates for the hydrogen producing bacteria. Alkali balance calculations showed that the amount of added alkali was reduced by 88%. This amount, required for hydrogen production from starch wastewater, was contributed by alkali in the methanogenic effluent, (2225 ± 140 mg CaCO3/L), resulting in lower operational costs.  相似文献   

18.
In this study various two-stage processes were investigated for biological hydrogen production from olive mill wastewater (OMW) by Rhodobacter sphaeroides O.U.001. Two-stage processes consist of physicochemical pretreatment of OMW followed by photofermentation for hydrogen production. Explored pretreatment methods were chemical oxidation with ozone and Fenton's reagent, photodegradation by UV radiation, and adsorption with clay or zeolite. Among these different two-stage processes, strong chemical oxidants like ozone and Fenton's reagent have the highest color removal (90%). However, their effluents were observed to be unsuitable for both hydrogen production and bacterial growth. On the other hand, clay treatment method was selected as the optimum process that allows fast and low-cost treatment as well as its effluent found to have the highest hydrogen production potential (31.5 m3 m?3). Spent-clay regeneration was also investigated on the grounds that solid waste minimization is important for the overall efficiency of this process.  相似文献   

19.
An optimized Ru-doped LaFeO3 photocatalyst was coupled with magnetic Fe2O3 particles and was tested in the photocatalytic hydrogen production from glucose degradation under visible light irradiation. The catalysts were successfully synthesized by solution combustion synthesis using citric acid as organic fuel. Complete glucose degradation and hydrogen production of 5460 μmol/L was obtained after 4 h of irradiation using composite containing 67 wt% of Ru-doped LaFeO3. After seven cycles of reuse, the photocatalytic activity did not change, evidencing the high stability of the magnetic photocatalyst, which can be recovered from the photoreactor using an external magnetic force. The recyclable sample was finally tested in the treatment of real wastewater from cherries washing process, and a very high hydrogen production (12344 μmol/L) was achieved. Finally, the possibility to couple the photocatalytic process (used for the production of hydrogen) with a heterogeneous photo-Fenton process was investigated in order to mineralize the unconverted organics in the wastewater coming from the photoreactor.  相似文献   

20.
Distillery wastewater rich in organics is an inexpensive renewable resource for making first generation biofuel. Distillery wastewaters are mostly treated via the biomethanation route; however, in this study the conditions in sequential batch reactor (SBR) are being set to develop and analyze the microbial community that opted for hydrogen production. An optimum performance condition for a bioreactor was achieved after 40 days of operation, which gave substrate degradation rate of 0.72 kg/m3-day with volumetric hydrogen production of 0.32 mol H2/m3-day. Study proposes that the dominant Delftia sp., a hydrogen oxidizing bacterium has been replaced during hydrogen production mode with dominant Anaerofilum sp., an anaerobic Firmicute and the iron dependent hydrogenases dominated as functional gene for hydrogen production. Future studies are required where process-engineering interventions could be applied to improve the hydrogen driving biochemical process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号