共查询到20条相似文献,搜索用时 15 毫秒
1.
Datta S. Shen Shi Roenker K.P. Cahay M.M. Stanchina W.E. 《Electron Devices, IEEE Transactions on》1998,45(8):1634-1643
The performance capabilities of InP-based pnp heterojunction bipolar transistors (HBT's) have been investigated using a drift-diffusion transport model based on a commercial numerical simulator. The low hole mobility in the base is found to limit the current gain and the base transit time, which limits the device's cutoff frequency. The high electron majority carrier mobility in the n+ InGaAs base allows a reduction in the base doping and width while maintaining an adequately low base resistance. As a result, high current gain (>300) and power gain (>40 dB) are found to be possible at microwave frequencies. A cutoff frequency as high as 23 GHz and a maximum frequency of oscillation as high as 34 GHz are found to be possible without base grading. Comparison is made with the available, reported experimental results and good agreement is found. The analysis indicates that high-performance pnp InP-based HBT's are feasible, but that optimization of the transistor's multilayer structure is different than for the npn device 相似文献
2.
A new collector design for the AlGaAs-GaAs double heterostructure bipolar transistor (DHBT) is proposed, analyzed, and simulated. The base-collector junction is linearly graded and terminated with a highly doped thin layer to offset the adverse alloy grading electric field. Simple analytical formulas are derived to facilitate the implementation of the design. A proof-of-principle simulation has been carried out for an X-band AlGaAs-GaAs power DHBT to confirm the design and the derived formula. The simulation shows the breakdown voltage can be increased from 30 V to about 45 V while the critical current density is about the same. It is also shown that, unlike other refined DHBT structures, the proposed structure does not require critical control in the fabrication of the base-collector junction 相似文献
3.
A numerical electro-thermal model was developed for AlGaAs/GaAs heterojunction bipolar transistors (HBT's) to describe the base current, current gain and output power dependence on junction temperature. The model is applied to microwave HBT devices with multi-emitter fingers. The calculated results of the common-emitter, current-voltage characteristics in the linear active region show a “current crush” effect due to inherent nonuniform junction temperature, current density and current gain distribution in the device. The formation of highly localized high temperature regions, i.e., hot spots, occur when the device is operating beyond the current-crush point. This thermally induced current instability imposes an upper limit on the power capability of HBT's. The dependence of this effect on various factors is discussed. These factors include the intrinsic parameters such as the base current ideality factor, the “apparent” valence band discontinuity, and the temperature coefficient of the emitter-base turn-on voltage, as well as the extrinsic factors such as the emitter contact specific resistance, the substrate thermal conductivity and the heat source layout 相似文献
4.
A new comprehensive model for space-charge region (SCR) recombination current in abrupt and graded energy gap heterojunction bipolar transistors (HBTs) is derived. It is shown that if a spike is present in one of the bands at the heterojunction interface, the SCR recombination current becomes interrelated with the collector current. A previously proposed charge control model for the HBT is modified to include the SCR recombination current. The model is used to study SCR recombination characteristics in HBTs 相似文献
5.
Various materials are studied to determine their potential in power heterojunction bipolar transistors (HBTs). The authors first start by generating an HBT figure of merit (FOM) which is defined as the product of operating frequency and output power of the HBT with 3-dB power gain. By using the FOM and available material parameters, a material-based comparison of HBT performance is done. The general tendency is for use of narrow-bandgap materials, such as Ge or InGaAs, as the base and wide-bandgap materials, such as AlGaAs, InP, SiC, or GaN, as the collector, technology permitting 相似文献
6.
A compact heterojunction bipolar transistor (HBT) model was employed to simulate the high frequency and high power performances of SiC-based bipolar transistors. Potential 6H-SiC/3C-SiC heterojunction bipolar transistors (6H/3C-HBT's) at case temperatures of 27°C (300 K) through 600°C (873 K) were investigated. The high frequency and high power performance was compared to AlGaAs/GaAs HBT's. As expected, the ohmic contact resistance limits the high frequency performance of the SiC HBT. At the present time, it is only possible to reliably produce 1×10-4 Ω-cm2 contact resistances on SiC, so an fT of 4.4 GHz and an fmax of 3.2 GHz are the highest realistic values. However, assuming an incredibly low 1×10-6 Ω-cm2 contact resistance for the emitter, base, and collector terminals, an fT of 31.1 GHz and an fmax of 12.7 GHz can be obtained for a 6H/3C-SiC HBT 相似文献
7.
Zhang Q.M. Tan G.-L. Moore W.T. Xu J.M. 《Electron Devices, IEEE Transactions on》1992,39(11):2430-2437
Two-dimensional simulations that demonstrate the effects of displacements of the p-n junctions from the heterojunctions of symmetrical Al0.28Ga0.72/GaAs double-heterojunction bipolar transistors (DHBTs) are reported. When the emitter and/or collector p-n junctions do not coincide with the AlGaAs/GaAs heterojunctions, the electrical characteristics are shown to be drastically altered due to changes in the potential profiles and to changes in recombination rates both in the neutral base and in the space-charge region of the emitter. The effects of a small displacement of the p-n junction from the emitter-base or the base-collector heterojunctions are examined and results for current gain β and cutoff frequency f T are given that demonstrate enhanced performance for DHBTs with p-n junctions that are not coincident with the heterojunctions 相似文献
8.
The equivalent base noise SIb of InP/InGaAs heterojunction bipolar transistors (HBT's) with a circular pattern emitter is investigated experimentally at a low frequency ranging from 10-105 Hz. The measured SIb exhibits the 1/f dependence in an overall frequency range without any accompanying burst noise. Furthermore, SIb varies as Ibγ for the base current Ib and as d-2 for the emitter diameter d, where the value of γ ranges from 1.62-1.72 depending on d of HBT's used. The 1/f noise model, which rigorously deals with the recombination current at the base surface Ibs as a function of Ib as well as of d is proposed. Applying our noise model to the dependence of SIb on Ib, as well as on d, reveals that even though γ is less than two, the origin of SIb is due to the recombination of electrons at the exposed base surface near the emitter edges. On the basis of theoretical considerations for the diffusion length of electrons and traps at the base surface, the Hooge parameter αH for the noise due to the base surface recombination is deduced to be in the order of 10 -2 for the first time 相似文献
9.
During elevated-temperature bias stress, InGaP/GaAs HBT's grown by MOCVD show a medium-term degradation in current gain of about 20%, with an activation energy of 0.64 eV. They also show a corresponding decrease in base resistance and an increase in turn-on voltage. InGaP/GaAs HBTs grown by GSMBE, however, do not show this degradation. SIMS measurements show a five times greater than GSMBE-epi hydrogen concentration of about 1019 cm-3 in the base layer of the MOCVD-grown epi. The degradation can be explained by acceptor depassivation due to hydrogen out-diffusion from the epi during stress 相似文献
10.
The high-frequency performance of semiconductor devices is estimated using a small-signal numerical calculation based on drift-diffusion equations. In particular, unity current gain frequency in the common-emitter configuration (f T) and maximum frequency of oscillation (f max) are calculated for a heterojunction bipolar transistor. f max is calculated from numerically obtained y parameters using formulas for maximum available gain, Mason's invariant (U ), and a passivity criterion. They all give the same value for f max. The influence of extrinsic and intrinsic base resistance on f max is investigated for one device design. It is also found that a frequency used approximation formula for f max is inaccurate, especially at higher current levels 相似文献
11.
Crabbe E.F. Cressler J.D. Patton G.L. Stork J.M. Comfort J.H. Sun J.Y.-C. 《Electron Device Letters, IEEE》1993,14(4):193-195
The authors report the experimental observation of a novel effect in SiGe heterojunction bipolar transistors (HBTs) with graded bases which results in a significant emitter-base bias dependence of the current gain. The nonideal collector current is caused by the interaction of the bias dependence of the emitter-base space-charge region width and the exponential dependence of the collector current on the germanium concentration at the edge of the space-charge region. The resulting current gain rolloff must be taken into account for accurate modeling of bipolar transistors with bandgap grading in the base 相似文献
12.
13.
Orientation effects on N-p-n AlGaAs/GaAs heterojunction bipolar transistors (HBT's) have been demonstrated for the first time. We have observed that the current gains of HBT's fabricated on the same wafer are strongly dependent on the emitter direction. The HBT's with emitter direction of [010] show the highest current gain and the smallest emitter-size effect. This orientation effect could be attributed to the piezoelectric effect, which superposes the piezoelectric charges to the original emitter doping and generates the weak lateral electric field that drifts the injected carriers at the emitter periphery. The difference of the saturation voltage between collector-emitter of those HBT's corresponds to the superposed piezoelectric charges 相似文献
14.
We report the failure mechanisms resulting in the second breakdown characteristics found in AlGaAs/GaAs power heterojunction bipolar transistors (HBTs). The dominant failure mechanism is identified to be the increasingly larger base-collector leakage current at elevated junction temperatures. This failure mechanism is compared with those found in silicon bipolar transistors 相似文献
15.
Plana R. van Haaren B. Escotte L. Delage S.L. Blanck H. Graffeuil J. 《Electron Device Letters, IEEE》1997,18(3):108-110
In this paper an annealing procedure which gives an excess noise reduction both of heavily C-doped resistive structures and GaInP/GaAs Heterojunction Bipolar Transistors (HBTs) of 5 dB is proposed. The investigation of the correlation between the noise generators indicate that the annealing leads to a decrease of noise voltage attributed to a strain reduction both in the intrinsic and in the extrinsic base related to a site switching effect of carbon atoms. The reduction of noise current with annealing is attributed to the surface improvement related passivation process by hydrogen atoms 相似文献
16.
This paper summarizes different kinds of heat sinks on the market for high power LED lamps.Analysis is made on the thermal model of LED,PCB and heat sink separately with a simplified mode provided.Two examples of simulation are illustrated as a demonstration for the thermal simulation as guidance for LED lamp design. 相似文献
17.
This paper summarizes different kinds of heat sinks on the market for high power LED lamps. Analysis is made on the thermal model of LED, PCB and heat sink separately with a simplified mode provided. Two examples of simulation are illustrated as a demonstration for the thermal simulation as guidance for LED lamp design. 相似文献
18.
Sato H. Vlcek J.C. Fonstad C.G. Meskoob B. Prasad S. 《Electron Device Letters, IEEE》1990,11(10):457-459
Collector-up InGaAs/InAlAs/InP heterojunction bipolar transistors (HBTs) were successfully fabricated, and their DC and microwave characteristics measured. High collector current density operation (J c>30 kA/cm2) and high base-emitter junction saturation current density (J 0>10-7 A/cm2) were achieved. A cutoff frequency of f t=24 GHz and a maximum frequency of oscillation f max=20 GHz at a collector current density of J 0 =23 kA/cm2 were achieved on a nominal 5-μm×10-μm device 相似文献
19.
Liu W. Fan S. Kim T.S. Beam E.A. III Davito D.B. 《Electron Devices, IEEE Transactions on》1993,40(8):1378-1383
GaInP/GaAs heterojunction bipolar transistors (HBTs) and both graded and abrupt AlGaAs/GaAs HBTs were fabricated. A total of 20 wafers were analyzed. Comparisons of the experimental results establish that the dominant carrier transport mechanism in GaInP/GaAs HBTs is the carrier diffusion through the base layer. This suggests that the conduction-band barrier across the GaInP/GaAs emitter-base junction is so small that the barrier spike does not affect the carrier transport. This result differs from other published results which, by studying device structures other than HBTs, determined the conduction band barrier to be as large as ~50% of the bandgap difference. The findings of the present investigation, however, agree well with another published work which also examined an HBT structure. The difference between these works is discussed 相似文献
20.
Topham P.J. Long A.P. Saul P.H. Parton J.G. Hollis B.A. Hiams N.A. Goodfellow R.C. 《Solid-State Circuits, IEEE Journal of》1989,24(3):686-689
A compact wideband amplifier (or gain block) designed around a Darlington pair of GaAs/GaAlAs heterojunction bipolar transistors (HBTs) is discussed. This circuit has been fabricated by an ion-implanted process with a transistor f t of 40 GHz. Two variants of the circuit gave either a 8.5-dB gain with a DC-to-5-GHz 3-dB bandwidth or a 13-dB gain with a DC-to-3-GHz bandwidth. These amplifiers gave 11.8- and 18.3-dBm output, respectively, at 1-dB gain compression 相似文献