首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Responses to mechanical strain in calvaria and limb bone organ cultures were compared by measuring cellular glucose 6-phosphate dehydrogenase (G6PD) activity in situ and prostaglandin release. Normal functional strains were recorded in the ulnae (1000 mu epsilon) and calvarium (30 mu epsilon) in vivo in 110 g rats. Organ cultures of ulnae and calvaria from similar animals were loaded to produce dynamic strains (600 cycles, 1 Hz) of 1000 mu epsilon in the ulna, and 100 or 1000 mu epsilon in calvaria. In ulnae, both PGE2 and PGI2 were released and resident osteocytes and osteoblasts showed increased G6PD activity. Neither response was seen in calvaria. However, exogenous PGI2 (10(-5)-10(-9) M) stimulated G6PD activity in osteocytes and osteoblasts in organ cultures of both calvaria and ulnae. In ulnar cells the response was linear, in calvarial cells it was biphasic with maximum activity at 10(-7) M. Osteoblasts derived from ulnae and cultured on plastic plates subjected to dynamic strain (600 cycles, 1 Hz, 4000 mu epsilon) showed increased G6PD activity. There was no such response in similarly treated calvarial-derived cells. Calvarial bone cells differ from those of the ulna in that they do not respond to physiological strains in their locality with increased prostanoid release or G6PD activity either in situ or when seeded onto dynamically strained plastic plates. Cells from both sites in organ culture show increased G6PD activity in response to exogenous PGI2, but their dose:responses differ in shape. These differences may reflect the extent to which functional loading influences bone architecture in these two sites.  相似文献   

2.
According to the evolutionary tree proposed by Garstang, the tunicate larva has a central role in directing the ancestral sessile animal derived from primitive echinoderms into the stem for vertebrates by evolution through neoteny. The close similarity of the tunicate larval body plan to those of vertebrates and the extraordinary simplicity indicated by an extremely small cell population make the ascidian embryo and larva an excellent model system for analysis of vertebrate embryonic development. Furthermore, isolated anterior animal blastomeres from the Halocynthia eight-cell cleavage-arrested embryo, which are known to include presumptive brain vesicle region, autonomously develop long-lasting Ca-dependent action potentials which are characteristic of epidermal differentiation. However, when blastometeres are cultured in contact with the anterior vegetal blastomere, which are known to include presumptive notochordal region, and raised in contacted two cell systems, the same anterior animal blastomeres now develop neuronal Na+ spikes characterized by expression of Na+ channels and triethylammonium sensitive delayed rectifier K+ channels. This unique two-cell system enables us to examine roles of cell contact in various aspects of inductive differentiation at the cellular level. In this review, we focus on this simple cellular preparation and in particular, attempt to show how to make the preparation.  相似文献   

3.
4.
The nature of the signaling process activated by neuronal nicotinic receptors has not been fully defined; however, several recent studies have implicated the involvement of calcium ion fluxes in the response to nicotine on a cellular level. Alteration of nicotine-induced antinociception in mice after systemic administration was therefore investigated in the presence of several drugs that increase intracellular calcium. Calcium, (+/-)-BAYK 8644, thapsigargin, glyburide and A23187 administered intrathecally (i.t.) were found to enhance nicotine-induced antinociception by shifting its dose-response curve to the left. Conversely, i.t. administration of agents which decrease intracellular calcium, such as EGTA and alpha-calcitonin gene-related peptide, blocked nicotine-induced antinociception. These findings support a role for spinal intracellular calcium in the pharmacological effects of nicotine. Additionally, blockade of antinociception by nimodipine and nifedipine indicates that a L-type calcium channel is involved in nicotine's effect. However, nicotine did not compete for [3H] nitrendipine binding. Intrathecal administration of mecamylamine, a nicotinic antagonist, resulted in a blockade of antinociception produced by the i.t. injection of thapsigargin, A23187, calcium and (+/-)-BAYK 8644. The mechanism of mecamylamine's antagonism of nicotine is uncertain. However, these results suggest that mecamylamine blocks the effects of drugs which increase intracellular calcium by either a modulation of intracellular calcium-dependent mechanisms or a blockade of calcium channels. Thus, mecamylamine could modulate a calcium signaling process secondary to receptor activation resulting in blockade of antinociception produced by diverse agents.  相似文献   

5.
A method for site-specific, nitrobenzyl-induced photochemical proteolysis of diverse proteins expressed in living cells has been developed based on the chemistry of the unnatural amino acid (2-nitrophenyl)glycine (Npg). Using the in vivo nonsense codon suppression method for incorporating unnatural amino acids into proteins expressed in Xenopus oocytes, Npg has been incorporated into two ion channels: the Drosophila Shaker B K+ channel and the nicotinic acetylcholine receptor. Functional studies in vivo show that irradiation of proteins containing an Npg residue does lead to peptide backbone cleavage at the site of the novel residue. Using this method, evidence is obtained for an essential functional role of the "signature" Cys128-Cys142 disulfide loop of the nAChR alpha subunit.  相似文献   

6.
Our understanding of the signalling mechanisms involved in the process of stomatal closure is reviewed. Work has concentrated on the mechanisms by which abscisic acid (ABA) induces changes in specific ion channels at both the plasmalemma and the tonoplast, leading to efflux of both K+ and anions at both membranes, requiring four essential changes. For each we need to identify the specific channels concerned, and the detailed signalling chains by which each is linked through signalling intermediates to ABA. There are two global changes that are identified following ABA treatment: an increase in cytoplasmic pH and an increase in cytoplasmic Ca2+, although stomata can close without any measurable global increase in cytoplasmic Ca2+. There is also evidence for the importance of several protein phosphatases and protein kinases in the regulation of channel activity. At the plasmalemma, loss of K+ requires depolarization of the membrane potential into the range at which the outward K+ channel is open. ABA-induced activation of a non-specific cation channel, permeable to Ca2+, may contribute to the necessary depolarization, together with ABA-induced activation of S-type anion channels in the plasmalemma, which are then responsible for the necessary anion efflux. The anion channels are activated by Ca2+ and by phosphorylation, but the precise mechanism of their activation by ABA is not yet clear. ABA also up-regulates the outward K+ current at any given membrane potential; this activation is Ca(2+)-independent and is attributed to the increase in cytoplasmic pH, perhaps through the marked pH-sensitivity of protein phosphatase type 2C. Our understanding of mechanisms at the tonoplast is much less complete. A total of two channels, both Ca(2+)-activated, have been identified which are capable of K+ efflux; these are the voltage-independent VK channel specific to K+, and the slow vacuolar (SV) channel which opens only at non-physiological tonoplast potentials (cytoplasm positive). The SV channel is permeable to K+ and Ca2+, and although it has been argued that it could be responsible for Ca(2+)-induced Ca2+ release, it now seems likely that it opens only under conditions where Ca2+ will flow from cytoplasm to vacuole. Although tracer measurements show unequivocally that ABA does activate efflux of Cl- from vacuole to cytoplasm, no vacuolar anion channel has yet been identified. There is clear evidence that ABA activates release of Ca2+ from internal stores, but the source and trigger for ABA-induced increase in cytoplasmic Ca2+ are uncertain. The tonoplast and another membrane, probably ER, have IP3-sensitive Ca2+ release channels, and the tonoplast has also cADPR-activated Ca2+ channels. Their relative contributions to ABA-induced release of Ca2+ from internal stores remain to be established. There is some evidence for activation of phospholipase C by ABA, by an unknown mechanism; plant phospholipase C may be activated by Ca2+ rather than by the G-proteins used in many animal cell signalling systems. A further ABA-induced channel modulation is the inhibition of the inward K+ channel, which is not essential for closing but will prevent opening. It is suggested that this is mediated through the Ca(2+)-activated protein phosphatase, calcineurin. The question of Ca(2+)-independent stomatal closure remains controversial. At the plasmalemma the stimulation of K+ efflux is Ca(2+)-independent and, at least in Arabidopsis, activation of anion efflux by ABA may also be Ca(2+)-independent. But there are no indications of Ca(2+)-independent mechanisms for K+ efflux at the tonoplast, and the appropriate anion channel at the tonoplast is still to be found. There is also evidence that ABA interferes with a control system in the guard cell, resetting its set-point to lower contents, suggesting that stretch-activated channels also feature in the regulation of guard cell ion channels, perhaps through interactions with cytoskeletal proteins. (ABSTRACT TRUN  相似文献   

7.
The ability of quantitative ultrasound to predict the mechanical properties of trabecular bone under different strain rates was investigated. Ultrasound velocity (UV) and broadband attenuation (BUA) were measured for 60 specimens of human trabecular bone. Samples were divided into two equal groups and loaded in compression at the strain rates of 0.0004 and 0.08 s-1. The ultimate strength, elastic modulus, and energy absorption capacity were determined for each specimen. Specimens tested at 0.08 s-1 had a mean value of strength 63% higher than the specimens tested at 0.0004 s-1. The elastic modulus and energy absorption capacity were 82% and 42% higher, respectively, for the higher strain rate. UV and BUA were significantly associated with most mechanical properties at both strain rates. All mechanical properties were also correlated strongly with a linear combination of UV and BUA for both the low and high loading rates. The use of ultrasound parameters may provide good clinical means for assessing the resistance of trabecular bone to both low and high energy trauma.  相似文献   

8.
A stretch-activated Cl- current (ICl) was investigated in cultured murine microglia using the whole-cell configuration of the patch-clamp technique. After application of membrane stretch, a Cl- current appeared within seconds, and its amplitude increased further within 3-8 min. ICl underwent rundown, which was prevented by addition of 4 mM ATP to the intracellular perfusing solution. The stretch-activated Cl- current exhibited outward rectification and did not show any voltage-dependent gating. Lowering the concentration of extracellular Cl- from 142 to 12 mM by equimolar substitution of Cl- with gluconate shifted the reversal potential of ICl by 41.6 +/- 1.8 mV in the depolarizing direction. 4, 4'-Diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) and 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS) blocked ICl in a voltage- and time-dependent manner. At a test potential of +40 mV, a half-maximal blockade at 16.1 microM DIDS and at 71.0 microM SITS was determined for ICl. At a concentration of 200 microM, 5-nitro-2-(3-phenylpropylamino)benzoic acid or flufenamic acid blocked ICl by 88% and 75%, respectively. Each of these four Cl- channel blockers reversibly inhibited the ramification process of microglia, whereas blockers of voltage-gated Na+ and K+ channels did not affect the transformation of microglia from their ameboid into the ramified phenotype. It is suggested that in microglia functional stretch-activated Cl- channels are required for the induction of ramification but not for maintaining the ramified shape.  相似文献   

9.
The nicotinic acetylcholine receptor (nAChR) is a cation-selective ion channel that opens in response to acetylcholine binding. The related glycine receptor (GlyR) is anion selective. The pore-lining domain of each protein may be modeled as a bundle of five parallel M2 helices. Models of the pore-lining domains of homopentameric nAChR and GlyR have been used in continuum electrostatics calculations to probe the origins of ion selectivity. Calculated pKA values suggest that "rings" of acidic or basic side chains at the mouths of the nAChR or GlyR M2 helix bundles, respectively, may not be fully ionized. In particular, for the nAChR the ring of glutamate side chains at the extracellular mouth of the pore is predicted to be largely protonated at neutral pH, whereas those glutamate side chains in the intracellular and intermediate rings (at the opposite mouth of the pore) are predicted to be fully ionized. Inclusion of the other domains of each protein represented as an irregular cylindrical tube in which the M2 bundles are embedded suggests that both the M2 helices and the extramembrane domains play significant roles in determining ion selectivity.  相似文献   

10.
Kramers' diffusion theory of reaction rates in the condensed phase is considered as an alternative to the traditional discrete-state Markov (DSM) model in describing ion channel gating current kinetics. Diffusion theory can be expected to be particularly relevant in describing high-frequency (>100 kHz) events in channel activation. The generalized voltage sensor of a voltage-dependent ion channel is treated as a Brownian motion particle undergoing spatial diffusion along a one-dimensional energy landscape. Two classes of energy landscapes are considered. The first class contains large barriers, which give rise to gating currents with two distinct time scales: the usual low-frequency decay, which can modeled with a DSM scheme, and a high-frequency component arising from intrastate relaxation. Large depolarizations reduce potential barriers to such a degree that activation rates are diffusion limited, causing the two time scales to merge. Landscapes of the second class are either featureless or contain barriers that are small compared to kT; these are termed "drift landscapes." These landscapes require a larger friction coefficient to generate slow gating kinetics. The high-frequency component that appears with barrier models is not present in pure drift motion. The presence of a high-frequency component can be tested experimentally with large-bandwidth recordings of gating currents. Topics such as frequency domain analysis, spatial dependence of the friction coefficient, methods for determining the adequacy of a DSM model, and the development of physical models of gating are explored.  相似文献   

11.
Ion channels are essential for the generation and maintenance of the cardiac action potential. The successful cloning of ion channels has shed considerable light into their structure and function. The combination of molecular biological and electrophysiological studies has paved the ground to develop general concepts for understanding properties of these channels, such as gating mechanism, kinetics of activation and inactivation, ion selectivity and pharmacological properties. Recently, several cDNAs encoding cardiac inwardly rectifying K+ channels, including classical inwardly rectifying, G-protein-gated, and ATP-sensitive K+ channels, have been isolated. Identification of these molecular mechanisms may point to novel approaches to the treatment of cardiac arrhythmias. This review focuses on the molecular properties and functional roles of cardiac ion channels.  相似文献   

12.
13.
Voltage-gated Cl- channels belonging to the ClC family exhibit unique properties of ion permeation and gating. We functionally probed the conduction pathway of a recombinant human skeletal muscle Cl- channel (hClC-1) expressed both in Xenopus oocytes and in a mammalian cell line by investigating block by extracellular or intracellular I- and related anions. Extracellular and intracellular I- exert blocking actions on hClC-1 currents that are both concentration and voltage dependent. Similar actions were observed for a variety of other halide (Br-) and polyatomic (SCN-, NO3-, CH3SO3-) anions. In addition, I- block is accompanied by gating alterations that differ depending on which side of the membrane the blocker is applied. External I- causes a shift in the voltage-dependent probability that channels exist in three definable kinetic states (fast deactivating, slow deactivating, nondeactivating), while internal I- slows deactivation. These different effects on gating properties can be used to distinguish two functional ion binding sites within the hClC-1 pore. We determined KD values for I- block in three distinct kinetic states and found that binding of I- to hClC-1 is modulated by the gating state of the channel. Furthermore, estimates of electrical distance for I- binding suggest that conformational changes affecting the two ion binding sites occur during gating transitions. These results have implications for understanding mechanisms of ion selectivity in hClC-1, and for defining the intimate relationship between gating and permeation in ClC channels.  相似文献   

14.
15.
The earliest commitment to the formation of glomeruli is recognizable in S-shaped bodies. Although cell-cell adhesion seems likely to play a crucial role in this process, how glomerular epithelial cells segregate from the other parts of the nephron is unknown. In this study, immunofluorescence microscopy and monoclonal antibodies specific for mouse R-, E-, P- and N-cadherins were used to examine which of these adhesion molecules are involved in glomerulogenesis of the mouse kidney. Weak R-cadherin staining was first found in the vesicle stage, becoming restricted to glomerular visceral epithelial cells (VEC) during the S-shaped body stage. The intensity of this staining became stronger in the capillary loop stage, whereas parietal epithelial cells (PEC) and tubular cells did not stain. In the maturing stage, VEC gradually lost their staining for R-cadherin. E-cadherin was detected in ureteric buds and the upper limb of S-shaped bodies. From the capillary loop to the maturing stage, anti-E-cadherin stained epithelial cells in all tubule segments, but no label was seen in VEC or PEC. P-cadherin was also stained in the ureteric buds and in the upper limb of S-shaped bodies. N-Cadherin was weakly stained in cells at the vesicle stage, but thereafter staining of N-cadherin was not detected at any stage of glomerular formation. Immunoelectron microscopy of differentiating VEC was performed using antibodies specific to alpha-catenin, which is associated with cadherin. Subsequently, immunogold particles identifying alpha-catenin were localized on junctions between primary processes of VEC. These findings indicate that R-cadherin is uniquely expressed in differentiating VEC, suggesting an important role in the early stages of glomerulogenesis.  相似文献   

16.
Immunoelectron microscopy (IEM) was used to analyze the compatible and incompatible host-pathogen interaction between the obligate, biotroph stem rust (Puccinia graminis f.sp. tritici; Pgt) and primary leaves of wheat (Triticum aestivum L.). The investigation was focused on the subcellular localization of a fungal elicitor glycoprotein of stem rust (Pgt-elicitor). Uredospores as well as fungal infection structures of stem rust on wheat leaves were probed with a specific monoclonal antibody, in order to determine the in situ distribution pattern of the antigen. Binding to the anti-elicitor antibody was observed over the cell wall and the germ pore of germinating uredospores. Immunogold staining was found over the infection structures of stem rust within the wheat leaf tissue of both the compatible and incompatible plant-pathogen interaction. Distinct cell wall layers of the intercellular mycelium, of the haustorial mother cells, as well as of the haustoria were clearly labeled. Gold particles were also detected over the intercellular space and the extrahaustorial matrix in between the extrahaustorial membrane and the haustorial cell wall which indicated a release of elicitor molecules from the fungal cell wall. No labeling was observed over the host cell cytoplasm of the compatible and incompatible interaction, respectively. The immunocytochemical detection of elicitor epitopes over the hyphal cell walls of in vitro grown axenic cultures of P. graminis f.sp. tritici confirmed the occurrence of elicitor molecules in young hyphal material. Elicitor molecules were released by the hyphae of axenic cultures of stem rust in vitro.  相似文献   

17.
The epithelial sodium channel (ENaC) is the prototype of a new family of ion channels known as the Mec-ENaC superfamily. This new family of proteins are involved in a wide variety of functions that range from maintenance of sodium homeostasis to transduction of mechanical stimuli and nociceptive pain by specialized neurons. They show distinct tissue- and cell type-dependent expression and differential sensitivity to inhibition by the diuretic amiloride and its analogs. Despite the very little amino acid identity shared by these proteins, they all have the same common structure that has become a hallmark of the Mec-ENaC superfamily. The efforts to understand the structure and regulation of these ion channels have been stimulated by the recent discovery of severe disturbances in the maintenance of blood pressure caused by gain- or loss-of-function mutations in the genes that encode the subunits of ENaC in humans. Moreover, cloning of the ion channels that mediate pain elicited by tissue injury and inflammation will facilitate the development of new drugs to treat these common ailments.  相似文献   

18.
Mechanosensitive ion channels of the archaeon Haloferax volcanii   总被引:1,自引:0,他引:1  
Mechanosensitive (MS) ion channels have been documented in a variety of cells belonging to Eukarya and Eubacteria. We report the novel finding of two types of MS ion channels in the cell membrane of the halophilic archaeon Haloferax volcanii, a member of the Archaea that comprise the third phylogenetic domain. The two channels, MscA1 and MscA2, differed in their kinetic properties with MscA1 exhibiting more frequent open-closed transitions than MscA2. Both channels have large conductances that rectify between -40 mV and +40 mV where the conductance of MscA1 ranged from 380 to 680 picosiemens, whereas MscA2 ranged from 850 to 490 picosiemens. Both channels were blocked by submillimolar gadolinium. In addition, the channels of either membrane vesicles or detergent-solubilized membrane proteins remained functional upon reconstitution into artificial liposomes, a result that indicates that these channels are activated by mechanical force transmitted via the lipid bilayer alone. Subsequently a 37-kDa protein corresponding to the MscA1 channel activity was purified. With the possible functional similarity to bacterial MS channels, our finding of MS channels in Archaea emphasizes the ubiquity and importance of these channels in all domains of the evolutionary tree.  相似文献   

19.
The authors report two cases of colovesical fistula as a complication of diverticular disease. They underline the increasing frequency of this complication, although the less frequent one. They also stress the importance of clinical and instrumental examinations that are several and among which TC scan can be crucial for surgical treatment. The therapy, exclusively surgical, can be made in one or two steps, according to patient status.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号