首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A melamine polyphosphate (MPP)/dipentaerythritol (DPER) mixture was used as fire retardant additives for preparing waterborne intumescent fire resistive coating. The thermal degradation of the MPP/DPER mixture and of the coating was studied by TGA and FTIR. The resulting char of the coating was investigated by XPS, SEM and energy dispersive spectroscopy (EDS). The results showed that the thermal degradation behavior of the MPP/DPER mixture was similar to that of the coating. They decomposed to nonflammable gases, and formed intumescent char layer containing phosphorus oxide at high temperature. The EDS results proved that the resulting char was gradually oxidized with the temperature increase. The SEM micrographs showed that the average cell size of the char layers became bigger and the cell size distribution became wider as the temperature increased from 500 °C to 800 °C, and this non-uniform char layer could damage the fire protection of the coating.  相似文献   

2.
The influence of nano-boron nitride (BN) with a multilayered structure on the anti-aging property of fire-resistive coatings was studied. After accelerated weathering for 20 days, the thermal stabilities and fire protection of the coating without nano-BN were significantly decreased, but the coating modified by nano-BN still maintained excellent intumescent effect and fire protection. The results indicated that nano-BN could improve the anti-aging property of the coatings remarkably. FTIR and XPS characterizations suggested that nano-BN with a multilayered structure could prevent the migration behavior of the hydrophilic fire-retardant additives and keep the fixed ratio of those additives in the coating. TGA results demonstrated that nano-BN could effectively enhance the thermal stabilities of the aged coatings and improve the anti-oxidation property of the char layers formed by the coatings. XRD and EDS results proved that the anti-oxidation of the aged coatings under high temperature could be enhanced effectively after adding nano-BN. SEM observations illustrated that nano-BN addition was beneficial to the improvement of the foam structure of the aged coating.  相似文献   

3.
The combination of self-crosslinking polyacrylate emulsion and silicone emulsion was used as a binder for the preparation of waterborne intumescent fire-resistive coatings. The influences of silicone emulsion on fire protection and char formation of the coatings were investigated in detail by means of TGA, SEM, energy dispersive spectroscopy analysis, rheological measurement, and fire protection tests. The results showed that using silicone emulsion improved thermal stability and antioxidation ability of the coating and increased the residue weights of the char layer at high temperature. Furthermore, an appropriate amount of silicone emulsion could improve the rheological property of the mixed binders and be conducive to the increase of the intumescent factor of the coatings, thus improving the fire protection of the coating significantly. However, an excess amount of silicone emulsion can lead to uneven dispersion of silicone emulsion in the mixed binder and cause an uneven distribution of cell size of the char layer.  相似文献   

4.
Cone calorimetry tests performed at 50 kW/m2 heat flux have been exploited for assessing the fire resistant properties of nano-structured intumescent coatings containing modified layered double hydroxides (hydrotalcites, LDHs) and deposited on steel plates. The effects of different types of modified hydrotalcites (i.e. magnesium–aluminum lactate hydrotalcite, magnesium–aluminum gluconate hydrotalcite, magnesium–aluminum hydrotalcite modified with a fatty acid, magnesium–aluminum hydrotalcite modified with rosin) on the thermal shielding performances of the intumescent coatings and their intumescent degree have been thoroughly discussed and compared with the pristine unfilled counterparts.More specifically, the coatings containing organo-modified LDHs showed better thermal shielding performances with respect to the reference intumescent coating; on the contrary, the use of unmodified hydrotalcite in the intumescent formulations was found detrimental. The thermal shielding performances of the coatings filled with modified LDHs were found to be strictly related to the intumescent degree developed during the cone calorimetry tests. In addition, it was possible to compare the thermal shielding performances of the nanofilled coatings by evaluating the temperatures achieved after 2000 s exposure to the 50 kW/m2 heat flux of the cone: the thermal shielding performance sequence was LDH-GL > LDH-RS > LDH-LA > LDH-FA > LDH).Finally, the intumescent degree of the modified coatings was found to decrease with increasing the hydrotalcite content, hence lowering their thermal shielding performances.  相似文献   

5.
The aim of this study was to develop intumescent flame-retardant coatings that incorporate chicken eggshell (CES) waste as a novel eco-friendly bio-filler. Three flame-retardant additives, namely, ammonium polyphosphate phase II, pentaerythritol and melamine were mixed with flame-retardant fillers and acrylic binder to synthesize the intumescent coatings. The fire performance of the coatings was evaluated in accordance with ‘BS 476: Part 6-Fire Propagation’ and ‘BS 476: Part 7-Surface Spread of Flame’ test standards. It was found that 4 out of 5 of the coated specimens (B, C, D and E) neither showed surface spread of flame nor any afterglow combustion upon fire exposure. The addition of 5.0 wt% and 2.5 wt% eggshell bio-filler into formulations B and E, respectively, improved fire protection due to char formation, with better morphology, height and structure of the protecting shield. The filler compositions of samples D (3.4 wt% TiO2/3.3 wt% Al(OH)3/3.3 wt% Mg(OH)2) and E (2.5 wt% TiO2/2.5 wt% Al(OH)3/2.5 wt% Mg(OH)2/2.5 wt% CES) applied at a thickness of 1.5 ± 0.2 mm achieved the lowest fire propagation index with a value of 4.5 and 5.0, respectively (BS 476 Part 6, Class 0 materials) which indicates excellent fire-stopping properties. The results showed that the coatings were effective in fire protection, with good qualities of water resistance, thermal stability, and adhesion strength. Significantly, coating E (with CES) has proved to be efficient in the protection of plywood against fire.  相似文献   

6.
A melamine polyphosphate (MPP)/dipentaerythritol (DPER) mixture was used as fire retardant additives for preparing waterborne intumescent fire resistive coating. The thermal degradation of the MPP/DPER mixture and of the coating was studied by TGA and FTIR. The resulting char of the coating was investigated by XPS, SEM and energy dispersive spectroscopy (EDS). The results showed that the thermal degradation behavior of the MPP/DPER mixture was similar to that of the coating. They decomposed to nonflammable gases, and formed intumescent char layer containing phosphorus oxide at high temperature. The EDS results proved that the resulting char was gradually oxidized with the temperature increase. The SEM micrographs showed that the average cell size of the char layers became bigger and the cell size distribution became wider as the temperature increased from 500 °C to 800 °C, and this non-uniform char layer could damage the fire protection of the coating.  相似文献   

7.
The fire protection and thermal stability properties of intumescent fire-retardant coatings filled with three various clay nano-fillers (layer double hydroxide [LDH], montmorillonite [MMT], and sepiolite) were compared by fire protection tests and thermo-gravimetric analysis. The fire protection tests show that the incorporation of three fillers improves the fire protection properties of the intumescent fire-retardant coatings and the addition of 1 wt% sepiolite exhibits the lowest flame spread rating of 9.9 and equilibrium backside temperature of 164.5°C at 900 seconds. TG analysis shows that the incorporation of nano-fillers imparts a considerable enhancement of thermal stability and char formation to the intumescent coatings. Especially, the coating with 1 wt% sepiolite acquires the highest residual weight of 34.2% among the samples. Char residue analysis presents that the introduction of clay nano-fillers plays a positive role in enhancing the compactness and anti-oxidation ability of the char residues, and this positive effect as well as the flame-retardant efficiency depends on the types of clay nano-fillers. The three types of layered clay nano-fillers exhibit synergistic flame-retardant effectiveness in the order of sepiolite > MMT > LDH.  相似文献   

8.
Nano-sized BN and micron-sized BN were used as fillers in fire-resistive coatings. The experimental results suggested that nano-BN with a multilayer structure could remarkably enhance the fire protection of fire-resistive coatings. Turbiscan data indicated that nano-sized BN had better dispersion stability in waterborne coatings than micron-sized BN. TGA results showed that nano-sized BN could enhance the thermal stability of the coatings, especially under high temperature. FTIR and EDS results exhibited that nano-sized BN was helpful in reducing the oxidation degree and enhancing the antioxidation property of the char layer under high temperature. The morphology observation demonstrated that nano-sized BN could improve the foam structure of the char layer so as to improve the mechanical strength of the char layer. Nano-sized BN was helpful for the even distribution of the cells; thus the efficiency of heat insulation of the char layer was enhanced. These results proved that nano-sized BN was beneficial to the forming and expanding of the intumescent char layer, and could provide better fire protection for the coatings.  相似文献   

9.
A solventborne alkyd composite coating containing modified montmorillonite (MMT) nanoclay was made on carbon steel, and its corrosion protection was investigated by in-situ atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS) measurements in 3 wt.% NaCl solution. X-ray diffraction (XRD) analysis indicated intercalation of the MMT sheets in the composite coating. Thermo-gravimetric analysis (TGA) demonstrated improved thermal stability of the composite coating due to the modified nanoclay. Scanning electron microscopy (SEM) and AFM examination revealed dispersion and also some aggregation of the nanoclay particles in the coating. In-situ AFM images show a stable coating surface at nano-scale during relative long time exposure in the NaCl solution, indicating an enhanced stability of the composite coating. The EIS results confirmed that the composite coating provides an enhanced barrier type corrosion protection for carbon steel in the corrosive solution, which could be attributed to the intercalated lamellar MMT sheets in the coating that block the defects and decrease the transport of water and corrosive species.  相似文献   

10.
Fire‐retardant coatings could be one option for providing enhanced protection to buildings during a wildfire, particularly when applied to combustible siding and in under‐eave areas. Limited studies have been conducted on their effectiveness but maintaining adequate performance after weathering has been questioned. This paper reports on a study evaluating the effect of natural weathering on the performance of intumescent‐type fire‐retardant coatings. The main concerns were (a) the reduction of ignition resistance of the coating after weathering and (b) the coating might contribute as a combustible fuel and assist the fire growth after weathering. This study evaluated the performance of 3 intumescent coatings that were exposed to natural weathering conditions for up to 12 months. A bench‐scale evaluation using a cone calorimeter was used to evaluate the performance of the coatings at 3 heat flux levels (30, 50, and 70 kW/m2). Our results showed that weathering exposure reduced the effectiveness of fire protection of intumescent coatings, but the weathered coatings did not act as additional fuels. Weathering orientation showed much less effect on the performance of intumescent coatings in comparison to other parameters. There was statistical evidence that weathering duration, heat flux level, and coating type affected the combustion properties.  相似文献   

11.
Oxidation resistant C-AlPO4–mullite coating for SiC pre-coated carbon/carbon composites (SiC-C/C) was prepared by a novel hydrothermal electrophoretic deposition process. The phase composition, surface and cross-section microstructure of the as-prepared multi-layer coatings were characterized by X-ray Diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The influence of deposition voltage on phase composition, microstructure and oxidation resistance of the as-prepared coatings was particularly investigated. Results show that the outer layer coating mainly composed of C-AlPO4 and mullite phase can be achieved after the hydrothermal electrophoretic deposition. The thickness, density and anti-oxidation property of the C-AlPO4–mullite coating was improved with the increase of deposition voltage from 160 V to 200 V. The multi-layer coating prepared at a voltage of 200 V exhibit excellent anti-oxidation property, which can effectively protect C/C composites from oxidation in air at 1773 K for 324 h with a weight loss of 1.01%. The failure of the multi-layer coatings is due to the generation of cross-holes in the coating, which cannot be self-cured by the metaphosphate and silicate glass layer after long time oxidation at 1773 K.  相似文献   

12.
The purpose of this research was to evaluate the influences of filler type and its content on the performance of a water-based intumescent fire-retardant coating. Three fillers (vermiculite, celite, and aluminum hydroxide) were added to the intumescent paint formulation. The thermal and fire protective properties were studied with thermogravimetric analysis (TGA), torch test, electrical furnace, scanning electron microscopy (SEM), and Fourier transform infrared analysis (FTIR). The results showed that adding fillers into coatings up to 3% could improve the intumescent coating's behavior and increase its endurance against flames. Of the three fillers used, vermiculite showed a better performance in the torch test, attributed to its chemical and physical structure. Vermiculite has low thermal conductivity and is considered an appropriate filler for heat-insulation. The final back-plate temperatures in the torch test for the vermiculite-containing samples were around 100°C–150°C lower than that of other samples. Moreover, vermiculite's addition improved the coating's expansion by 10% compared with the control sample's. The vermiculite sample's char layer morphology showed a uniform cell size distribution, indicating structural robustness. The coating samples successfully transformed polypropylene flammability from highly flammable to V0 level in the UL 94 vertical burning test standard. The results showed that vermiculite could improve intumescent paint's fire resistance and be used as an enhancer in intumescent coating formulations.  相似文献   

13.
A cyclic polyphosphate (CPPA) was synthesized by the reaction of polyphosphoric acid and pentaerythritol. Polyethylene glycol (PEG) was introduced in the structure of CPPA to improve its solubility in water and ethanol and five kinds of reactive type flame retardants (MCPPA) were obtained. 31P NMR, 1H NMR, FTIR, and TGA were used to characterize the composition and structure of CPPA and MCPPAs. The experimental results showed that there were 25% cyclic P–O–C structures in the product and MCPPA had better carbonization ability than CPPA. Five kinds of transparent fire-resistive coatings were prepared by the mixing of amino resin with five kinds of MCPPAs. The results of the fire protection test showed that both the fire-resistive time of coatings and intumescent factor of char layers decreased with the increase of molecular weight of PEG. The results of TGA and EDS showed that the carbonaceous residue of coatings and the antioxidation ability of char layers also decreased regularly with the increase of molecular weight of PEG. The SEM images demonstrated that the coating prepared with low molecular weight of PEG contributed to dense form structure and narrow distribution of cell size. Above all, the transparent fire-resistive coating prepared with PEG 200 had the best fire retardancy and stable thermal behavior.  相似文献   

14.
In this work, the exfoliated and functionalized boron nitride (f-BN) nanosheets were prepared via facile treatment and used in the intumescent fire retardant (IFR) coatings, which offer passive fire protection to the steel. To acquire the best fire resistance, the formula of the coating was optimized using response surface methodology (RSM) based on central composite design. According to the result, the optimal sample, with 36.2 wt% ammonium polyphosphate (APP), 27.4 wt% pentaerythritol (PER), 16.8 wt% melamine (MEL), and 7.9 wt% f-BN, was prepared and its fire resistance was tested in our lab. At the end of fire resistance test, the backside temperature of optimal sample was only 185.2°C, which was very close to the RSM-predicted result, indicating satisfactory fire resistance. During the test, the coating decomposed to form an intumescent char layer with high graphitization degree and compactness, thus suppressing the transfer of heat and protecting the underlying steel. In addition, the optimal coating possessed great water tolerance and thermal stability, and its water contact angle and char yield reached up to 66.7° and 40.5%, respectively. Hence, this IFR coating with satisfied fire retardancy and water tolerance has broad practical future in the fire safety of steel structure.  相似文献   

15.
Nanosized ZnO modified by 2-aminoethyl-3-aminopropyltrimethoxysilane (APS) was prepared using the precipitation method. Modified nano ZnO by silane (ZnO-APS) was characterized by XRD, SEM, TEM and UV–vis measurements. The degradation of the polyurethane coating, the polyurethane coatings containing 0.1 wt% nano ZnO and the polyurethane coatings containing nano ZnO-APS at two concentrations (0.1 and 0.5 wt%) during QUV test was evaluated by gloss measurement and electrochemical impedance spectroscopy. The coating surface after QUV test was observed with SEM. The results show that nano ZnO-APS has spherical structure with particle size around 10–15 nm. Nano ZnO improved the UV resistance of the PU coating and surface treatment by APS enhanced the effect of nano ZnO. The presence of nano ZnO-APS at 0.1 wt% concentration significantly improved the UV resistance of polyurethane coating.  相似文献   

16.
A multi-functional anti-oxidation (AO) protective coating is produced in one-step synthesis on the surface of the carbon/carbon (C/C) composite by a novel electrically induced liquid infiltration (EILI) method. The AO coating involves several protective layers which have different anti-oxidation mechanisms. In this study phosphorus acid is applied as active-site poisoning agents to inhibit oxidations by forming stable glassy complex barriers that decrease oxygen diffusion. Simultaneously silicon carbide (SiC) or SiC/silica layers are formed on the surface of C/C composites that act as physical protection barriers for oxygen penetration. It is proved that under the optimum conditions the acid groups survive the high temperature EILI process. Oxidation tests reveal that formed coatings effectively protect C/C composite from oxidation: average percent of weight losses decrease from 30 to 1 wt.% and from 69 to 5 wt.% for the thermal (1150 K) and catalytic (920 K) oxidation tests, respectively.  相似文献   

17.
水性超薄膨胀型钢结构防火涂料的制备   总被引:2,自引:1,他引:1  
刘斌  张德震  常宝 《涂料工业》2011,41(1):44-47,51
以有机硅改性的丙烯酸酯乳液为基料,多聚磷酸铵(APP)、季戊四醇(PER)、三聚氰胺(MEL)为膨胀阻燃体系,制备水性超薄膨胀型钢结构防火涂料;采用硼酸和可膨胀石墨(EG)改性防火涂料。研究表明,同时用w(硼酸)=4%,w(EG)=5%改性防火涂料,涂层的耐火极限达到93 min,热失质量分析(TGA)测试表明w(硼酸)=4%,w(EG)=5%共同改性的防火涂料在700℃时最终残炭量是44%。扫描电镜(SEM)分析结果表明硼酸/EG改性的残炭层形成了致密的"蜂窝"状结构。  相似文献   

18.
A vinyl phosphonic acid based flame retardant coating has been applied on the surface of a glass-fibre reinforced epoxy (GRE) composite substrate using a UV polymerisation technique. On exposure to heat the poly (vinyl phosphonic acid) (PVPA) coating thus obtained, intumesces and acts as a thermal insulator, providing active fire protection to the composite structure. Samples with ∼300 and 500 μm thick coatings were prepared. The fire performance of the coated GRE composite was studied by cone calorimetry at 35 and 50 kW/m2 heat fluxes. While the sample with ∼500 μm thick coating did not ignite at both heat fluxes, the one with the ∼300 μm thick coating ignited at 50 kW/m2, however the time-to-ignition was delayed from 60 s in the uncoated sample to 195 s and the peak heat release rate reduced from 572 kW/m2 to 86 kW/m2. The coatings did not peel off when subjected to a tape pull test and resisted cracking/debonding during an impact drop test of up to 5 J energy. However, the coatings are hydrophilic, showing significant mass loss in a water soak test. The improvement of the hydrophobicity of these coatings is a focus of our future research.  相似文献   

19.
In this article, dihydroxy polydimethylsiloxane (n = 5–10) was introduced into the structure of polyphosphate (PPE) to get siloxane‐modified polyphosphate (SiPPE). Five kinds of SiPPEs with different Si contents were obtained. FTIR (Fourier Transform Infrared spectroscopy) ICP (Inductively Coupled Plasma Emission Spectroscopy), 31P NMR (Nuclear Magnetic Resonance Spectroscopy) and TGA (Thermogravimetric Analysis) were used to characterize the composition and structure of PPE and SiPPEs. Six kinds of transparent fire‐resistive coatings were prepared by the mixing of amino resin with PPE and five kinds of SiPPEs. The results of the fire protection test showed that both the fire‐resistive time of coatings and intumescent factor of char layers increased with the increase in content of Si. The results of TGA demonstrated that the carbonaceous residue of coating also increased regularly. The hardness, flexibility, digital photos, SEM (Scanning Electronic Microscopy) and other testing results showed that the introduction of silicon oxygen segment can effectively improve the crack resistance. The charcoal layer structure was more solid than before and collapse was not obvious after long time flame shock. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42423.  相似文献   

20.
The aim of this study was to investigate the effect of boron compounds on fire protection properties of intumescent coating based on ammonium polyphosphate (APP). Three kinds of boron compounds namely boric acid (BA), zinc borate (ZB) and melamine borate (MB) were used. Total amount of flame retardant additive was kept constant at 30 wt%, and boron compounds were used at three concentrations of 1, 3 and 5 wt%. Thermogravimetric analysis (TGA), Attenuated total reflectance–Fourier transform infrared spectroscopy (ATR‐FTIR) and fire test were conducted for the determining the fire performance of intumescent coating. According to fire test results, BA and MB showed synergistic effect at 1 wt% loading. ZB showed antagonistic effect at all concentrations. Fire protection effect of intumescent coating decreased as the added amount of boron compound increased regardless of boron compound type because of suppression of intumescence. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号