首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the polyester chemical structure on the degradation of polyester/melamine coatings was studied. Four different polyesters were synthesized using different diacid monomers: (i) isophthalic acid (IPA) and mixtures of hexahydrophthalic anhydride (HHPA) with (ii) terephthalic acid (TA), (iii) phthalic anhydride (PAN) and (iv) 1,4 cyclohexanedicarboxylic acid (1,4-CHDA). Varnishes were prepared using melamine resin and submitted to accelerated degradation cycles. The process was monitored in terms of photooxidation index (POI), based on FTIR analysis, and in terms of changes in films’ hardness, level of gloss and surface morphology. The monomers which contributed the most to polymer degradation were the couple HHPA and 1,4-CHDA. The most important factor to degradation was the high number of hydrogen atoms attached to tertiary and secondary carbons in the polymer structure, due to their high sensitivity to abstraction, which favors the photooxidation reactions. The monomer IPA presented the lowest POI and the highest gloss retention.  相似文献   

2.
The present work aims at the development of an energy-efficient and eco-friendly approach for the deposition of zinc phosphate coatings on steel. The study describes the possibility of preparing zinc–zinc phosphate composite coatings by cathodic electrochemical treatment using dilute phosphoric acid as an electrolyte and zinc as an anode. The methodology enables the preparation of coatings with different proportions of zinc and zinc phosphate by suitably varying the applied current density, pH, and treatment time. Adhesion of the coating on mild steel and adhesion of paint film on the phosphate coating were found to be good. The surface morphology of the coatings exhibited platelet-type features and small white crystals (agglomerated at some places) which represented zinc and zinc phosphate, respectively. An increase in current density (from 20 to 50 mA/cm2) increased the size of the zinc crystals, and coatings prepared at 40 and 50 mA/cm2 resembled that of electrodeposited zinc. Since the proportions of zinc and zinc phosphate could be varied with applied current density, pH, and treatment time, it would be possible to use this methodology to prepare coatings that would offer different degrees of corrosion protection.  相似文献   

3.
The aim of this work is the synthesis and investigation of silane based organic–inorganic hybrid coatings, which can be used to improve the corrosion performance of steel structures subjected to a marine environment. The silane based sol–gel coatings were prepared by dip coating 304L stainless steel in a solution of organically modified silica sol made through hydrolysis and condensation of 3-glycidoxypropyl-trimethoxysilane (GPTMS) as precursor and bisphenol A (BPA) as a cross-linking agent in an acid catalyzed condition. The influence of the addition of cerium and the use of bisphenol A as a cross-linking agent on the microscopic features and morphology as well as on the corrosion resistance of the coatings were examined using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), neutral salt spray tests, potentiodynamic polarization and electrochemical impedance techniques. Results show that cerium modified nano-hybrid coatings exhibit a superior corrosion inhibition performance to that displayed by silica hybrid coatings. Additionally, data showed that the bisphenol A as a cross-linking agent has a significant effect on the morphology and corrosion resistance of the cerium doped silica coating. Omitting the use of bisphenol A causes the creation of defects/cracks in the coating, thereby promoting diffusion of the aggressive electrolyte toward the substrate and decreasing the corrosion resistance of the coating.  相似文献   

4.
The hybrid sol–gel coating on Al 2024-T3 was modified by adding polyaniline, TiO2, or γ-Al2O3 nanoparticles in the formulation separately. The coating was then used as an adhesive to bond Al 2024-T3 alloys, forming a single lap joint. The bond strength of the sol–gel coating was investigated using a universal tensile test machine. The lap shear strength of the original sol–gel coating was about 1.38 MPa and it was increased up to 2.26 MPa after the modification by adding 0.05 wt% PANI microparticles in the sol–gel coating. The small increase in strength was attributed to an improvement in its adhesive flexibility because of incorporation of the long-chain organic polymer in its structure. Furthermore, the addition of different amounts of TiO2 nanoparticles in the unmodified sol–gel coating also led to an increase in shear strength compared to the undoped sol–gel coating. Typically, a sol–gel coating containing 2.0 wt% of TiO2 recorded the highest adhesive strength of about 4.0 MPa. A similar increase in strength was observed when doping γ-Al2O3 nanoparticles into the original hybrid sol–gel coating. Adding 0.5 wt% of γ-Al2O3 in the sol–gel coating increased the adhesive bonding strength up to 4.48 MPa. The fracture surface of the specimen was separately observed by SEM and Optical Microscopy in order to examine potential evidences of mechanism and nature of failure. The reason why the adhesive strength increased after the modification of the sol–gel coating is discussed in this article.  相似文献   

5.
This paper focused on the corrosion resistance of cold spray Al–Al_2O_3composite coatings used on carbon steel pipe surfaces under thermal insulation. Al–Al_2O_3coatings were produced on the carbon steel pipe surface by cold spray(CS) technology. Experimental apparatus was built to test the corrosion resistance of coatings beneath mineral wool insulation under isothermal, thermal cycling and wet/dry conditions. The results showed that when α-Al_2O_3 was added in spraying powder, the coating could obtain higher hardness and a denser microstructure. From corrosionunder-insulation(CUI) tests, Al–Al_2O_3CS coatings were proven to be efficient in protecting carbon steel pipe from CUI mainly owning to lamellar microstructures of coatings. There was no evidence to show that α-Al_2O_3 might bring any negative effect on corrosion resistance. Al–Al_2O_3CS coatings were sensitive to the chloride ion concentration. When these coatings were exposed to higher concentrations of NaC l, the coating's exhibited faster degradation.  相似文献   

6.
7.
The present work discusses on the corrosion resistant behaviour of polymer metal bilayer coatings, viz. polyaniline (PANI), polyaniline–nickel (PANI–Ni), nickel–polyaniline (Ni–PANI), polyaniline–zinc (PANI–Zn) and zinc–polyaniline (Zn–PANI). The coatings were synthesized by means of cyclic voltametric method. The coatings thus obtained were uniform in nature and highly adherent to the mild steel substrate. The effectiveness of the coatings in preventing corrosion was tested by electrochemical impedance studies (EIS) using Nyquist and Bode plots and potentiodynamic polarization studies as well. Among the various coatings synthesized, the PANI–Zn coating was found to offer the maximum protection, followed by PANI–Ni coatings. Metal–PANI coatings were found to offer the least resistance to corrosion. The coatings thus obtained were characterized by scanning electron microscopic (SEM) analysis and the results are discussed.  相似文献   

8.
Corrosion resistance behavior of sol–gel-derived organic–inorganic nanotitania–silica composite coatings was studied. Hybrid sol was prepared from Ti-isopropoxide and N-phenyl-3-aminopropyl triethoxy silane. The structure, morphology, and properties of the coating were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermo gravimetric analysis. The corrosion performances of the sol–gel-coated samples were investigated by electrochemical impedance spectroscopy (EIS) and standard salt spray tests. The hybrid coatings were found to be dense, more uniform, and defect free. In addition, the coatings also proved its excellent corrosion protection on phosphated steel sheet.  相似文献   

9.
Organic–inorganic hybrid (OIH) thin films derived from the sol–gel process have emerged as sustainable metal pretreatment alternatives to toxic heavy metal-based systems. In recent years, such OIH systems based on Si, Zr, and Ti have been successfully developed and commercialized for pretreatment of aluminum alloys, galvanized steel, cold-rolled steel, and many other metals and alloys, for improving adhesion and corrosion resistance performance. A variety of approaches are being used to further enhance performance of such OIH systems to match or surpass that obtained from chromate-based systems. In the present study, a novel bis-silane compound has been synthesized and used as a primary sol–gel precursor for OIH coatings. In order to further improve their mechanical and corrosion resistance performance, colloidal nanoparticles have been incorporated. The microstructure of the deposited films as a function of their composition and formation of Si–O–Si structural network has been studied by Confocal Raman spectroscopic technique. The chemical structure of the OIH films has been characterized by FTIR analysis. Electrochemical impedance spectroscopy, DC polarization measurements, and accelerated neutral salt-fog test (ASTM B117) have been used to evaluate corrosion resistance performance of coatings on industrial aluminum alloy AA 3003 H14. Nano-indentation tests of these OIH films have been performed to study the effect of colloidal nanoparticles on coating micro/nano structure and their mechanical properties. The study reveals that colloidal nanoparticles improve the corrosion resistance of OIH coatings by formation of a protective barrier to diffusion of corrosive species to the metal surface. The optimum content of colloidal nanoparticles that can provide best corrosion protection has been determined. Electrochemical study provides useful insight into the significance of interaction between the sol–gel hybrid and silica particles in the corrosion protection mechanism.  相似文献   

10.
In this paper, a solvothermal method is used to prepare nano-sized zinc oxide-graphene oxide (ZnO–GO) hybrid, and the ZnO–GO hybrid is characterized by X-ray diffraction analysis, Raman, Fourier transform infrared spectroscopy, and scanning electron microscopy. In addition, chemically bonded phosphate ceramics coatings with different content of ZnO–GO hybrid are prepared on the stainless steel through the sol-gel method. The corrosion performance of the coatings is evaluated by electrochemical properties and the analysis of the surface and cross morphology of the coating. Results indicate ZnO–GO hybrid significantly enhances the compactness and corrosive behavior of the coating because the overlapping structure of GO flake improves the barrier performance of the coating. Besides, ZnO nanoparticles on the surface of GO can react with aluminum dihydrogen phosphate binder, in that case the adhesion between GO and the coating is improved.  相似文献   

11.
《Ceramics International》2015,41(6):7461-7465
Titanium dioxide is widely used in a lot of applications. The properties of TiO2 strongly depend on its phase composition. The transformation temperature between phases is influenced by a lot of factors. One of them is a type of substrate under the TiO2 film. In presented work, thin films of TiO2 were deposited by the sol–gel method on silicon, stainless steel (304 L) and Co–Cr–Mo alloy (Vitallium). The process of anatase–rutile phase transformation was investigated by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) studies of deposited coatings. The results were compared with anatase–rutile transformations temperature of TiO2 powders obtained by analogous sol–gel process. The temperature of anatase–rutile phase transformation changed in the range of 700–1000 °C and strongly depends on a kind of substrate. It was found that anatase–rutile transformation of TiO2 coating proceeded at a higher temperature than rutilization of titania powders.  相似文献   

12.
《Ceramics International》2020,46(3):2670-2676
In this study, the effect of Fe content on the abrasion behavior of TiC–Fe nanocomposite coatings applied on the CK45 steel substrate by air plasma spray method was investigated. For this purpose, milled TiC powder was prepared at 1, 2, 3 and 4 h milled TiC powder for 4 h was selected as the suitable sample. In the next step, a suitable sample mixture with different iron powder concentrations of 5, 10, 15, 20 and 25% was prepared by mechanical milling. The granulated mixture was applied to the substrate using air plasma spray technique. Microstructural and phase analyzes were performed using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). According to the results of Williamson-Hall calculations, the TiC crystallites' size decreased by 49 nm–29 nm, and network strain reached 0.16% by increasing milling time from 1 h to 4 h. Studies have shown that the coatings contain titanium carbide, iron oxide, and titanium oxide, with the number of phases formed depending on the amount of iron in the chemical composition. Investigation of the tribological properties of the coating layer showed that with increased iron content in the coating, the wear resistance of the samples is reduced. Hardness tests on coatings indicate that adding iron to nanocomposite from 5 to 25% reduces hardness from 1025 to 699 Hv. It can be argued that a slight increase in the adhesion strength of the coating to the substrate is due to increased wettability because of the formation of molten iron in the coating.  相似文献   

13.
Al–Cr slag is the solid waste generated by the smelting of Cr metal. It presents a range of environmental hazards. This study addressed the corrosion resistance of Al–Cr slag containing chromium–corundum refractories to slags with different basicity. Herein, we provide suggestions for the use of Cr–corundum of different basicity in kilns. Al–Cr slag, brown fused Al2O3, and chrome green were used as the raw materials, with pure calcium aluminate cement being used as a binder. The brick samples, prepared using different blends of chrome green and corundum, were fired at 1600?°C, and subsequently subjected to a slag corrosion test. After corrosion by slag of different basicity, the phase composition and microstructure of the sample were analyzed by X-ray diffraction, energy dispersive spectrometer and scanning electron microscopy. There were two major findings. First, Cr–corundum brick made from Al–Cr slag has a better slag corrosion resistance than that made from Cr2O3 and brown fused Al2O3. Second, Cr–corundum brick made from Al–Cr slag has superior corrosion resistance to slag with a CaO:SiO2 ratio of 2:1.  相似文献   

14.
Wollastonite and porcelain–wollastonite coatings on stainless steel were obtained by electrophoretic deposition using acetone as dispersive medium. A direct electric current of 800 V for 3 min was used for obtaining the single wollastonite coating. A well-sintered layer was observed after heat treatment at 1050 °C for 1 h in air. The two-layer coating was obtained by depositing dental porcelain at 400 V for 30 s followed by the deposition of wollastonite at 400 V for 3 min. After forming the two layers, this complex coating was heat treated at 800 °C for 5 min. Under these conditions, strong bonds of both the interface wollastonite–porcelain and that of porcelain–metallic substrate were observed. The in vitro bioactivity assessment of the coatings was performed by immersing the deposited substrates in simulated body fluid (SBF) for 21 days. All the materials showed to be highly bioactive through the formation of a homogeneous apatite layer.  相似文献   

15.
The aim of this study was to evaluate the adhesion of different bioceramic coatings deposited by radio frequency magnetron sputtering on the biodegradable implant-type magnesium–calcium (MgCa) alloys. Hydroxyapatite (HA) and bioactive glass (BG) were chosen as coating materials, due to their remarkable biological potential. The morphology, composition, structure and adhesion of the deposited thin coatings was characterized by scanning electron microscopy, atomic force microscopy, energy dispersive X-ray spectroscopy, grazing incidence X-ray diffraction, Fourier transform infrared spectroscopy and pull-out adherence measurements. A variation of the coating-to-substrate adhesion has been recorded and correlated with the physico-chemical results. The bonding strength values of the coatings were promising (being superior to the ISO13779-2:2008 fabrication standard for load-bearing biomedical coatings), and thus, encourage us to further proceed with the biological evaluation of the HA or BG coatings-MgCa substrate couples.  相似文献   

16.
Hierarchical zeolite ZSM-5 synthesized by applying amphiphilic organosilane as mesopore template, nanosized zeolite Beta and zeolite MCM-22 have been studied, for the first time in the conversion of mixed ethylbenzene–m-xylene feed. The effects of the channel structure, nanosizing and presence of mesopores in these zeolite materials with close Si/Al molar ratio on the catalytic activity and selectivity have been discussed. It was found that the diverse zeolites have different advantages and disadvantages in dependence on their structure and morphology. MCM-22 zeolite provides promising ethylbenzene conversion at low xylene loss with high production of the p-isomer among xylene.  相似文献   

17.
Thermal-cured, sol–gel derived, waterborne organosilane–polyester coatings (SiE) have been developed using methyltrimethoxysilane, 3-glycidoxytrimethoxysilane and polyester resin for corrosion protection of aluminum AA6011. The structural and morphological features of the coatings were analyzed by Fourier transform infrared spectroscopy (FT-IR) and atomic force microscopy (AFM). Results show that the coatings on aluminum were smooth, continuous and defect-free. Performance of the SiE coatings were investigated and compared with pure organosilane coating and polyester coating using potentiodynamic polarization studies, contact angle measurement and pencil hardness test. Results from polarization studies have shown that the SiE coated substrate (4.6–13.1 × 10−7 A/cm2) provided a better corrosion protection than the polyester coated substrate (7.8 × 10−6 A/cm2) due formation of aluminum–oxygen–silicon covalent bond at aluminum-coating interface. Furthermore, SiE coatings provided better hydrophobicity and hardness than the polyester coating.  相似文献   

18.
This paper presents an experimental study on the influence of anionic surfactant sodium dodecyl sulfate (SDS), pH, substrate finishing and annealing temperature on the corrosion resistance of electroless nickel phosphorus (Ni–P) coatings using electrochemical techniques and optimization of process parameters based on the Taguchi method. Parameters were selected in three levels and L9 from orthogonal robust array design was used. Corrosion performance of the electroless Ni–P coatings was evaluated by polarization and electrochemical impedance spectroscopy (EIS). Scanning electron microscope (SEM), Energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analysis were used for studying surface morphology and chemical composition of the electroless Ni–P coatings. The results showed that SDS surfactant causes increasing of corrosion resistance and improves surface morphology. Finally, optimum conditions were achieved as, surfactant concentration: 1.5 g L−1, pH: 5.5, substrate finishing provided with emery paper no, 2000, and annealing temperature of 200 °C.  相似文献   

19.
Hybrid silica sol–gel coatings were prepared on mild steel substrate by dip coating technique. The coatings were subsequently heat treated at 200 °C in order to improve their corrosion properties. The coating sols were synthesized using Glycidoxypropyltrimethoxysilane (glymo) and Aminopropylethoxysilane (ameo) as precursor materials. Potentiodynamic polarization curves were derived and Electrochemical Impedance Spectroscopy (EIS) measurements were made in NaCl solution. The surface and cross-section morphology of coated specimens were characterized by scanning electron microscopy (SEM). Fourier transformed infrared (FTIR) analysis was used to identify the presence of various functional groups in the coating solutions. A comparison of the corrosion resistance of the coated and uncoated mild steel was presented. The results indicated that the corrosion resistance of the coated mild steel was improved considerably.  相似文献   

20.
To improve the corrosion protection of sol–gel derived hybrid silica/epoxy coatings containing boehmite nanoparticles, inorganic corrosion inhibitor was introduced into the coating via encapsulation in the nanoparticles. The morphology and chemical structure of the deposited films were studied by Scanning Electron Microscopy (SEM) and Fourier Transformed Infra-red Spectroscopy (FT-IR). The anticorrosion and self-healing properties of the coatings were evaluated by Electrochemical Impedance Spectroscopy (EIS). The high corrosion resistance performance of such coatings is due to the presence of encapsulated cerium nitrate corrosion inhibitor that can be released at the defects within the coating, hindering the corrosion reactions at defective sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号