首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stable isotope ratios of three seston size classes (20–100 μm, 2–20 μm, and 0.2–2 μm) and zooplankton species were analyzed to determine the plankton food web structure of Lake Malawi. Over an annual cycle, seston δ13C varied between ?20.41‰ and ?27.43‰ with a mean value of ?24.27‰ ± 1.2 while δ13C values for zooplankton fluctuated between ?22‰ and ?25‰ with a mean of ?23.84‰ ± 0.77. Seston δ13C fluctuations appeared to be related to changes in physical and meteorological conditions in the lake that ultimately control nutrient availability. The highest seston δ13C values observed during the rainy and mixed seasons likely result from high phytolankton growth rates. δ15N of plankton was temporally variable, suggesting short term changes in N cycling dynamics that control the supply of N to phytoplankton. Very low seston δ15N values recorded during the mixing season suggest excess NO3? availability resulting from upwelling and vertical mixing. In contrast to expectations the calanoid Tropodiaptomus cunningtoni appeared to feed at a trophic level higher than that of all other zooplankton species, including the cyclopoid, Mesocyclops aequatorialis aequatorialis. δ15N values indicate that zooplankton were nearly 2 trophic levels above seston in the early stratified season. This implies that adult zooplankton could be utilizing forms of food other than phytoplankton during this period, such as nauplii or protozoans. This extra step in the food web, and the trophic positions of large zooplankton species, may alter estimates of food web efficiency and potential fish production for Lake Malawi.  相似文献   

2.
This study was carried out to demonstrate that the concentration of major and trace elements, determined in sediment samples separated mechanically into different size fractions, gives better information for assessing a potential hazard of in situ, dredged, or resuspended sediments than the bulk total concentration. The concentrations of major elements (Si, Al, Ca, Mg, Na, K, Fe, Ti, Mn, and P), trace elements (Cr, Co, Cu, Zn, V, Ni, and Pb), and organic and carbonate C were determined in six size fractions (< 13 μm, 13–19 μm, 19–27 μm, 27–40 μm, 40–54 μm, and 54–150 μm) of bottom sediments collected at eight stations along the Niagara River. Fine particles (< 13 μm) separated from the river sediments exposed to pollution sources accumulated greater metal quantities than particles in the other size fractions. The contribution of trace elements from specific size fractions was calculated from the particle size distribution and trace elements concentration. With the exception of Ni, significant differences were found between trace elements concentration in specif ic particle size fractions of Niagara River sediments and that from the nearshore zone of Lake Erie.  相似文献   

3.
Mills et al. (1987) developed an index of zooplankton mean size to assess the state of fish communities. The use of this index was evaluated in an assessment of the fish community structure in 1993 at nearshore and offshore sites in the three Lake Erie basins. Mills et al.’s index was developed using a 153-μm mesh net, while the samples in this study have been collected with 64-μm and 110-μm mesh size nets. Two methods were used to convert the data to 153-μm equivalent collections: (a) regression relationships based on simultaneous collections with three mesh sizes, and (b) elimination of smaller organisms that would have passed through the 153-μm mesh by determining the minimum length of inclusion (MLI). The regressions employed for the conversion of zooplankton mean length (ZML) between the nets were: ZML153 = 0.137 + 0.988 ZML110 (mm) (r2= 0.804) (n = 10) and ZML153 = 0.042 + 1.330 ZML64 (mm) (r2 = 0.931) (n = 9). The MLI that resulted in the same mean length as the 153-μm sample averaged (± 1 SE) 0.267 ± 0.016 mm (n =19).The comparison between zooplankton mean length and fish community structure in the western basin of Lake Erie in 1993 showed good agreement with Mills et al.’s index. However, the same was not true for the 1988 to 1990 data. Reasons for this discrepancy are discussed.  相似文献   

4.
Cyanotoxins, a group of hepatotoxins and neurotoxins produced by cyanobacteria, pose a health risk to those who use surface waters as sources for drinking water and for recreation. Little is known about the spatial and seasonal occurrence of cyanotoxins in Lake Ontario and other lakes and ponds within its watershed. Within the embayments, ponds, rivers, creeks, shoreside, and nearshore and offshore sites of Lake Ontario, microcystin-LR concentrations were low in May, increased through the summer, and reached a peak in September before decreasing in October. Considerable variability in microcystin-LR concentrations existed between and within habitat types within the Lake Ontario ecosystem. In general, the average microcystin-LR concentration was two orders of magnitude lower in embayment (mean = 0.084 μg/L), river (mean = 0.020 μg/L), and shoreside (mean = 0.052 μg/L) sites compared to upland lakes and ponds (mean = 1.136 μg/L). Concentrations in the nearshore sites (30-m depth) and offshore sites (100-m depth) were another order of magnitude lower (mean = 0.006 μg/L) than in the creek/river, bay/pond, and shoreside habitats. Only 0.3% (2 of 581) of the samples taken in Lake Ontario coastal waters exceeded the World Health Organization (WHO) Drinking Water Guideline of 1 μg microcystin/L for humans. In contrast, 20.4% (20 of 98) of the samples taken at upland lakes and ponds within the watershed of Lake Ontario exceeded WHO Guidelines. No significant relationship between nitrate and microcystin-LR concentrations was observed in Lake Ontario even though a significant positive relationship existed between phosphorus and phycocyanin and microcystin-LR concentrations. At an upland lake site (Conesus Lake) in the Ontario watershed, the development of a littoral Microcystis population was not observed despite high nutrient loading (P and N) into the nearshore zone, well-developed nearshore populations of filamentous Spirogyra and Zygnema, the occurrence of Dreissena spp., and the known occurrence of Microcystis and microcystin production in the pelagic waters of Conesus Lake.  相似文献   

5.
Invasive quagga mussels have recently replaced zebra mussels as the dominant filter-feeding bivalves in the Great Lakes. This study examined microzooplankton (i.e., grazers < 200 μm) and their trophic interactions with phytoplankton, bacteria, and bivalve mussels in Saginaw Bay, Lake Huron, following the zebra to quagga mussel shift. Microzooplankton distribution displayed strong spatial and temporal variability (1.73–28.5 μg C/L) relative to phytoplankton distribution. Ciliates were the dominant component, especially in the spring and early summer. Rotifers and dinoflagellates increased toward late summer/fall in the inner and outer parts of the bay, respectively. Microzooplankton grazing matched bacterial growth rates and removed ca. 30% of the phytoplankton standing stock in the < 100 μm size fraction per day. The greatest herbivory occurred at the site dominated by colonial cyanobacteria. Microzooplankton, which comprised < 4% of the quagga mussels prey field (i.e. available prey), contributed 77% and 34% to the quagga carbon-based diet during Microcystis and diatom blooms, respectively. Feeding on microzooplankton could buffer mussels during lean periods, or supplement other consumed resources, particularly during noxious cyanobacterial blooms. The results of this study demonstrate that microzooplankton are a resilient and critical component of the Saginaw Bay ecosystem.  相似文献   

6.
Zebra mussels had significant direct and possible indirect effects on heterotrophic bacteria in two contrasting sites in Saginaw Bay. At a eutrophic site in the inner portion of Saginaw Bay, mussels fed directly on bacterial-sized particles and had a negative impact on bacterial abundances. Mussels removed large bacteria (> 0.9 μm) more effectively than small bacteria at this site. Individual mussels cleared from 37–89 ml per day. Results using different sizes of fluorescent microspheres suggest that zebra mussels have a lower limit for particle size removal that is less than 0.4 μm. Contradictory to inner bay results, mussels at an outer bay oligotrophic site had a positive impact on heterotrophic bacterial abundance, perhaps as a result of indirect effects, such as nutrient or organic carbon excretion by the mussels. Differences in the impact of mussels on the bacterial communities of the inner bay and outer bay probably result from differences in trophic state and bacterial community structure. A hypothesized smaller size of bacteria at outer bay sites may enable them to escape heavy predation pressure from mussels and the high rates of mussel nutrient excretion may facilitate their growth in these nutrient depleted conditions.  相似文献   

7.
In an effort to develop indicators for Great Lakes near-shore conditions, diatom-based transfer functions to infer water quality variables were developed from 155 samples collected from coastal Great Lakes wetlands, embayments and high-energy shoreline sites. Over 2,000 diatom taxa were identified, and 352 taxa were sufficiently abundant to include in transfer function development. Multivariate data exploration revealed strong responses of the diatom assemblages to stressor variables, including total phosphorus (TP). Spatial variables such as lake, latitude and longitude also had notable relationships with assemblage characteristics. A diatom inference transfer function for TP provided a robust reconstructive relationship (r2 = 0.67; RMSE = 0.28 log(μg/L); r2jackknife = 0.55; RMSEP = 0.33 log (μg/L)) that improved following the removal of 13 samples that had poor observed-inferred TP relationships (r2 = 0.75; RMSE = 0.22 log(μg/L); r2jackknife = 0.65; RMSEP = 0.26 log (μg/L)). Diatom-based transfer functions for other water quality variables, such as total nitrogen, chloride, and chlorophyll a also performed well. Measured and diatom-inferred water quality data were regressed against watershed characteristics (including gradients of agriculture, atmospheric deposition, and industrial facilities) to determine the relative strength of measured and diatom-inferred data to identify watershed stressor influences. With the exception of pH, diatom-inferred water quality variables were better predicted by watershed characteristics than were measured water quality variables. Because diatom communities are subject to the prevailing water quality in the Great Lakes coastal environment, it appears they can better integrate water quality information than snapshot measurements. These results strongly support the use of diatoms in Great Lakes coastal monitoring programs.  相似文献   

8.
During the past 150 years, the mining industry discharged more than a billion tons of tailings along Lake Superior shorelines and constructed numerous smelters in the watershed. Given the vast size of Lake Superior, were sediment profiles at locations far offshore impacted by nearshore activities? Did copper and associated precious metal mining modify regional fluxes for copper and mercury? Samples from thirty sediment cores document that background concentrations of copper are high (mean 60.9 ± 7.0 μg/g), due to the proximity of natural ore sources. Anthropogenic inventories uncorrected for focusing also are high, ranging from 20 to 780 μg/cm2 (mean 187 ± 54 μg/cm2). Focusing factor corrections decrease the mean estimate and reduce variance (144 ± 24 μg/cm2). Several approaches to estimating inputs suggest that only 6 to 10% of historic copper deposition originated directly from atmospheric sources, emphasizing terrestrial sources. Moreover, coastal sediment cores often show synchronous early increases in copper and mercury with buried maxima. Around the Keweenaw Peninsula, twenty-two cores trace high copper and mercury inventories back to mill and smelting sources. Direct assays of ores from thirteen mine sites confirm a natural amalgam source of mercury in the stamp mill discharges. Core records from inland lakes (Michigamme Project) also reveal patterns of copper and mercury inputs from a variety of mining sources: historic tailing inputs, amalgam assay releases, and atmospheric smelter plumes.  相似文献   

9.
In 1993, 20 great blue heron (Ardea herodias; GBH) eggs (one per nest) were collected from a colony at the Indiana Dunes National Lakeshore, Indiana (INDU). The eggs were artificially incubated until pipping and were then analyzed for organochlorines, mercury, and selenium. Livers of embryos were analyzed for hepatic microsomal ethoxyresorufin-O-dealkylase (EROD) activity. Brains were measured for asymmetry. Egg-laying began in early April and the mean clutch size was 4.2 eggs per clutch. Organochlorine concentrations were generally low (geometric mean p,p’-DDE = 1.6 /μg/g wet weight; polychlorinated biphenyl [PCB] = 4.9 μg/g); however, one egg had elevated concentrations of p,p -DDE (13 /μg/g) and PCBs (56 /μg/g). EROD activity in the embryos analyzed from INDU was not elevated. The frequency (11%) of brain asymmetry was low. Eggshells averaged 3.4% thinner than eggshells collected prior to the use of DDT. Mercury (geometric mean = 0.9 μg/g dry weight) concentrations in GBH eggs were within background levels. Selenium (4.0 μg/g dry weight) concentrations in eggs were above background levels, but below a concentration threshold associated with reproductive impairment.  相似文献   

10.
Algal production in Maumee Bay in western Lake Erie is highly affected by inputs of nitrogen (N) and phosphorus (P) from the Maumee River, which drains predominantly agricultural lands, leading to the formation of cyanobacterial blooms. In a 3-year study, precipitation and discharge ranged from relatively low (2012) to relatively high (2011) with corresponding changes in the size of the cyanobacterial bloom. This study aimed to quantify the relation between river discharge and algal nutrient limitation in Maumee Bay. During the summer growing seasons, 20 nutrient enrichment bioassays were performed to determine which nutrient (P or N) might limit phytoplankton growth; and ambient N and P concentrations were monitored. The bioassays suggested that phytoplankton growth shifted from P-limited to N-limited during summer of the low and intermediate discharge years (2012 and 2010, respectively), whereas during the high discharge year (2011) phytoplankton were nutrient-replete before becoming N-limited. Phosphorus-replete growth during the high discharge year likely was due to high P loads from the river and dissolved P concentrations greater than 1 μmol/L. Symptoms of N-limited growth occurred during August and September in all three years and during July of 2012 when NO3 plus NH4+ concentration was less than 7.29 μmol/L suggesting low or no correspondence between N-limitation and size of the cyanobacterial bloom. Occurrence of a relatively small cyanobacterial bloom in 2012 following the record-breaking bloom in 2011 suggests the possibility of fast-reversal of eutrophication in Maumee Bay if P loading from the watershed could be decreased.  相似文献   

11.
Lake Malawi is a great lake not only because of its large size (30,800 km2); but also because it hosts between 700 and 1000 fish species, mostly endemic cichlids. The fish are most abundant and more diverse in the littoral zone. Cage aquaculture in Lake Malawi started in 2004 in the nearshore waters of the southeast arm. Approximately 50 cages were operational by 2009 harvesting about 20 tons fresh fish/cage/year. In 2007, data were aggregated from cage feed and production records to produce a mass balance for carbon (C), nitrogen (N) and phosphorus (P) added to cages in the form of feed and juvenile fish for 22 production cycles. Nutrient losses from cages to the surrounding environment accounted for between 81 and 91% for C, 59 and 80% for N and 85 and 92% for P. Production strategies such as stocking density and feeding rates were also analysed to assess their effect on fish harvests and nutrient loads from the fish cages. The study showed that nutrient loads from the cages were significant and can be exacerbated by poor feed quality, overstocking, stocking of premature fish and use of lower than recommended feeding rates to grow the fish to target sizes. The inefficient production strategies necessitated longer production cycles (376 ± 42 days) and more feed usage to achieve market sizes of ≥ 300 g/fish than if generally recommended stocking and feeding rates were followed. If cage aquaculture continues to expand, it will become an important new source of nutrients, not only locally, but on a lake-wide basis.  相似文献   

12.
C-phycocyanin (C-PC) and chlorophyll-a (Chl-a) concentrations for the eutrophic waters of Missisquoi Bay, Lake Champlain (VT–QC) were retrieved from Envisat's MERIS radiance data (300 m spatial resolution) and validated against coincident georeferenced transect observations. Pigment concentrations were also predicted from empirically calibrated QuickBird data (2.4 m spatial resolution) using selected band ratios and principal components analysis. The QuickBird NIR/Red band ratio accounted for approximately 80% of the variability in observed Chl-a concentration, allowing for detailed mapping of phytoplankton spatial distributions. C-PC concentrations, in contrast, were somewhat poorly modeled (R2 = 0.68). Use of these data for monitoring purposes, however, is also limited by the need for coincident field observations. Chl-a concentrations were also accurately retrieved from the MERIS data (Mean Relative Error = -0.6%) despite high concentrations of suspended particles and dissolved organic matter in the bay waters. C-PC concentrations were underestimated on average by 2.1%, but by 10–20% at high C-PC concentrations (≥ 80 μg/L) and as the proportion of cyanobacteria in the phytoplankton community decreased. The relatively high overall accuracies observed, however, attest to the robustness of the MERIS semi-analytical retrieval algorithms used to quantify potentially toxic cyanobacteria cell densities without the need for coincident field data. Our analyses over a 17 day period captured the peak and collapse of a late summer cyanobacterial bloom, illustrating the value of remote sensing to provide synoptic and timely information on the abundance and distribution of cyanobacterial populations that, in turn, can facilitate public health risk assessment.  相似文献   

13.
The movement of phosphorus (P) from agricultural fields to streams and deposition in the nearshore of the lake presents a continuum of related physical and chemical properties that act to partition P into different physico-chemical fractions. We investigated changes in soil and sediment P fractionation as material was eroded from predominantly agricultural fields, transported via stream sediments, and deposited in a nearshore lake environment. Total phosphorus content of the soils and sediment decreased from field soils with an average concentration of 553.81 mg P kg? 1 to 202.28 mg P kg? 1 in stream sediments to 67.47 mg P kg? 1 in lake sediments. Significant changes in P fractionation occurred during erosion, transport, and deposition of the particulate or sediment phase. The fractionation of P within the soils and sediments changed significantly from aluminum and organic matter associated P dominant in field soils to calcium associated P dominant in nearshore lake sediments. Various physical and chemical processes appear to be responsible for these transformations which impact the mobility and bioavailability of P. A significant amount of P was lost from field soils as they were transported and deposited. This P has either become available to biota or deposited in deeper portions of the lake system. Ultimately, the impact of P export on the nearshore lake environment may be influenced by the changes in P fractionation that occurred during transport and deposition and by the influence of macrophytes on the biogeochemical cycling of P in the sediment.  相似文献   

14.
Two 3-week experiments with small enclosures were conducted in situ in northeastern Green Bay, Lake Michigan, to compare the effects of separate and combined additions of cadmium and zinc on the zooplankton community. The radioisotopes 109Cd and 65Zn were used as tracers to determine the sorption of cadmium and zinc by different particle size fractions. Separate additions of 2 μg Cd/L or 100 μg Zn/L, as well as combined additions of 2 μg Cd/L + 100 μg Zn/Lor 1 μg Cd/L + 50 μg Zn/L, caused significant reductions of total crustacean density, species diversity, two community similarity indices, and final dissolved oxygen concentration. The effects of separate additions of 100 μg Zn/L were generally more pronounced than those of 2 μg Cd/L, but were similar to those of ~5 μg Cd/L. The effects of combined additions of 2 μg Cd/L + 100 μg Zn/L were not significantly different from those of 100 μg Zn/Lalone and were primarily due to zinc because it reduced cadmium uptake by the plankton (10–85 μm and >85 μm fractions). The effects of combined additions of l μg Cd/L + 50 μg Zn/L probably were also mainly due to zinc. The overall results of this study suggest that less than a ten-fold increase in the concentration of zinc in Lake Michigan (presently ~5 μg/L) could have pronounced effects on the plankton community.  相似文献   

15.
Suspended matter was collected from different depths at three stations in spring and summer, 1978, in Lake Erie. Chemistry, mineralogy, and morphology of the suspended particles were measured to investigate spatial and temporal changes. The determined elements (Si, Fe, Ca, K, Mn, P, Al, Ti, and Mg) were partitioned between inorganic and biological material and the majority of these elements were present in at least two different chemical forms. Flocculates > 3 μm composed of organic material and mineral fragments were common at the water surface and the middle of the water column. Mineral fragments < 3 μm were the major constituent of suspended matter at the bottom at the deepest sampling station (62 m). The concentration of the major components of the suspended matter, organic material, alumino-silicates, and calcite, varied significantly from spring until later summer. The high concentration of organic material and the fluctuations of calcite concentration result from high rates of photosynthesis and respiration and temperature increases in spring and summer.  相似文献   

16.
The Yangtze River floodplain contains numerous oxbow or riverine lakes, all of which were openly connected with the Yangtze River or its major tributaries prior to 1950s. However, stresses resulting from human settlement and utilization of catchment resources have exerted great pressures on these lake ecosystems changing their morphology, connectivity and trophic state lakes. This study examined the interaction of these changes and their impact on eutrophication for 90 shallow lakes in eastern China in 2008 to 2011. TN and TP in the study lakes had negative relationships with mean water depth (Zmean), but no single lake-basin characteristic was found to dominate chlorophyll-a (Chl-a) growth. Instead, water depth and surface area were found to interactively affect Chl-a concentrations in smaller lakes. That is, Chl-a concentration in the lakes with Zmean > 2 m and surface area (SA)  25 km2 was significantly higher than that in relatively larger lakes with Zmean > 2 m and SA > 25 km2 (p-value  0.038). Chl-a concentration was higher in the lakes located within the lower Yangtze River basin which had longer retention times, than in the lakes located within the middle Yangtze River basin, where flow velocity is relatively larger. As expected, the water quality was found to be better in the lakes hydraulically connected with rivers than in those isolated from the river. This study revealed that lake-basin morphology and hydrology dominated algal blooms in the highly eutrophic shallow lakes in eastern China.  相似文献   

17.
Energy densities of three salmonine prey species in Lake Superior were determined by bomb calorimetry to examine seasonal trends, differences due to gender and to establish a relation with percent dry weight. These results from April through October for 1992 and 1993 were compared with other studies from the Great Lakes region. Across the 2-year sampling period rainbow smelt Osmerus mordax energy density decreased from April to June and July then significantly increased into September. Lake herring Coregonus artedii energy density was highest in June, decreased significantly by August, and remained stable through October. Bloater C. hoyi energy density was lowest in July, then increased in August and early September before decreasing in late September. There were no significant differences in energy density between males and females for rainbow smelt and lake herring collected on the same date across sampling dates. However, bloater energy density was significantly higher for females than for males on two dates. Energy density estimates for bloater in Lake Superior were lower than those reported from Lake Michigan. Energy density values of rainbow smelt and lake herring fell within the range reported in Lake Michigan and Lake Ontario (rainbow smelt), and from two inland lakes in Minnesota and Lake Mendota, Wisconsin (lake herring). Percent dry weight was a good predictor of energy density (P < 0.001, r2 = 0.92–0.99) for all three species for both years. Percent dry weight vs energy density was significantly different between years for bloater and lake herring, and was significantly different for all three species compared with populations in other lakes in the Great Lakes Region.  相似文献   

18.
We investigated the trend in contaminant concentrations in Lake Superior bald eagles (Haliaeetus leucocephalus) from 1989–2001, and examined the relationship of contaminant concentrations to eagle reproductive rate during that time. Concentrations of dichloro-diphenyl-dichloroethylene (DDE) and total polychlorinated biphenyls (PCBs) in nestling blood plasma samples decreased significantly from 1989-2001 (p = 0.007 for DDE, p = 0.004 for total PCBs). Mean contaminant concentrations in eaglet plasma, 21.7 μg/kg DDE (n=51) and 86.7 μg/kg total PCBs (n = 54), were near or below the estimated threshold levels for impairment of reproduction as determined in other studies. A preliminary assessment of polybrominated diphenyl ether (PBDE) concentrations indicated a mean of 7.9 μg/kg total PBDEs in Lake Superior eaglet plasma (n = 5). The number of occupied bald eagle nests along the Wisconsin shore of Lake Superior increased from 15 to 24 per year, between 1989 and 2001 (p < 0.001, r2 = 0.70, n = 13 years). Eagle reproductive rate did not increase or decrease significantly between 1989 and 2001 (p = 0.530, r2 = 0.037, n = 13 years, mean productivity = 0.96 young per occupied nest). The lack of correlation between reproductive rate and contaminant concentrations, as well as the comparison of contaminant concentrations to the estimated thresholds for impairment of reproduction, suggest that DDE and PCBs no longer limit the reproductive rate of the Lake Superior eagle population in Wisconsin.  相似文献   

19.
Numerous freshwater lakes were examined for enrichment of bacteria in their surface films as compared to their subsurface waters. Surface films were sampled with a glass plate (60-100 μm) surface samples), a Teflon plate (~7 μm samples), or a hydrophilic Nuclepore filter (~40 μm samples). Subsurface samples (~0.1 m) were obtained with a sterile flask. Total bacterial counts were determined by epifluorescent microscopy. Enumerations of benzoic acid-degrading microorganisms were performed using a14C-most-probable-number technique, with 14C-substrate added to lakewater media at μg/L concentrations. Most lakes examined did not show significant enrichments of either total bacteria or benzoic acid-degrading bacteria in their surface films (~ 10–100 μm samples). Certain highly transparent lakes did show small enrichments of total bacteria in their surface films. A survey of lakes of various transparencies revealed a direct relationship (r = 0.94) between increasing transparency and increasing surface film enrichment of bacteria.  相似文献   

20.
The relationships between metallothionein-like protein (MTLP) and tissue metal (Ni, Cd, Cu, Zn, Pb) concentrations were examined in Oligochaetes and Chironomid larvae collected from reference and metal contaminated sediments. Tissue metal concentrations, for example, Cd reaching 0.3 μmol/g in oligochaetes and Cu, reaching 0.8 μmol/g in chironomids collected from Great Lakes reference sites (Environment Canada) indicated the presence of bioavailable metal at some sites. The concentration of MTLP ranged from 3.3 (± 1.0) to 11.5 (± 4.5) nmol MTLP/g in oligochaetes, and 2.7 (± 1.0) to 8.0 (± 2.7) nmol MTLP/g in chironomids. Individually, tissue metal concentrations were relatively poor (r2 = 0.002–0.52) predictors of MTLP, but when multiple metals were used the relationship became stronger (oligochaetes r2 = 0.84, p < 0.001; chironomids r2 = 0.61, p < 0.001), suggesting that MTLP was induced by multiple metals. Tissue metal and MTLP concentrations in invertebrates from the metal contaminated slips of Collingwood Harbour were not elevated above reference levels, indicating that only a fraction of the metal in the sediment is bioavailable. Chironomids collected from lakes contaminated by atmospheric fallout of smelting emissions (Rouyn-Noranda, QC) had elevated tissue metal concentrations but MTLP concentration did not consistently reflect elevated tissue metal. Overall, MTLP concentrations in invertebrates collected from metal-contaminated sites were not significantly higher than concentrations in reference site-collected invertebrates. The data presented here suggest that, at some sites, MTLP concentration in field-collected organisms would be a useful surrogate for tissue metal but, because of a lack of detailed taxonomy (organisms were designated as chironomids or oligochaetes) and the relatively small sample sizes of this study, no definitive conclusion regarding the suitability of MTLP concentration as a field-based biomarker of metal exposure can be made without further study  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号