首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(Na1/2La1/2)(Mg1/3Nb2/3)O3 undergoes a series of phase transitions that involve cation order on the A- and B-sites of the parent perovskite structure. At high temperatures both sites contain a random distribution of cations; below 1275°C a 〈111〉 layering of Mg and Nb leads to the formation of a 1:2 ordered structure with a monoclinic supercell. A second transition was observed at 925°C, where the Na and La cations order onto alternate A-site positions along the 〈001〉 direction of the parent subcell. By quenching samples from above 1275°C to preserve the disorder on the B-site, a fourth variant of this compound was obtained by inducing A-site order through a subsequent anneal at 900°C. Although the changes in structure do not produce significant alterations in the relative permittivity (ɛr∼ 35), they do have a significant effect on the value of the temperature coefficient of the capacitance.  相似文献   

2.
Single-phase perovskites were formed in the (1−x)Ba(Zn1/3Nb2/3)O3-( x )La(Zn2/3Nb1/3)O3 system for compositions with 0.0≤ x ≤0.6. Although the stability of the trigonal "1:2" ordered structure of the Ba(Zn1/3Nb2/3)O3 end member is very limited (0.0≤ x ≤0.05), low levels of lanthanum induce a transformation to a cubic, "1:1" ordered structure that has a broad range of homogeneity (0.05≤ x ≤0.6). Samples with x > 0.6 were comprised of La3NbO7, ZnO, and a perovskite with x = 0.6. The cubic 1:1 phases were fully ordered and no evidence was found for a compositionally segregated microstructure. These observations could not be reconciled in terms of a "space-charge" model; rather, they supported a charge-balanced, "random-site" structure for the 1:1 cation-ordered Ba(β1/21/2")O3 phases.  相似文献   

3.
(Bi1/2Na1/2)TiO3 with 0–6 mol% Ba(Cu1/2W1/2)O3 (BNT-BCW), a new member of the BNT-based group, has been prepared following the conventional mixed oxide route. The compacted bodies were sintered at 1130°C for 2 h to get dense ceramics. The addition of BCW into BNT ceramics facilitated the poling process because of a reduction in leakage current. 0.995BNT·0.005BCW ceramics exhibit a relatively high piezoelectric constant ( d 33= 80 × 10−12 C/N) and a relatively low dielectric loss (tan δ= 1.5%). Increased amount of BCW was found to increase the dielectric constant and loss of BNT-BCW ceramics and to suppress the grain growth. During sintering, some BCW diffuses into the lattice of BNT to form a solid solution and some remains on the grain boundaries.  相似文献   

4.
Liquidus phase equilibrium data are presented for the system Al2O3-Cr2O3-SiO2. The liquidus diagram is dominated by a large, high-temperature, two-liquid region overlying the primary phase field of corundum solid solution. Other important features are a narrow field for mullite solid solution, a very small cristobalite field, and a ternary eutectic at 1580°C. The eutectic liquid (6Al2O3-ICr2O3-93SiO2) coexists with a mullite solid solution (61Al2O3-10Cr2O3-29SiO2), a corundum solid solution (19Al2O3-81Cr2O3), and cristobalite (SO2). Diagrams are presented to show courses of fractional crystallization, courses of equilibrium crystallization, and phase relations on isothermal planes at 1800°, 1700°, and 1575°C. Tie lines were sketched to indicate the composition of coexisting mullite and corundum solid solution phases.  相似文献   

5.
Wet milling of Al2O3-aluminide alloy (3A) precursor powders in acetone has been investigated by milling Fe/Al/Al2O3 and Fe2O3/Al/Al2O3 powder mixtures. The influence of the milling process on the physical and chemical properties of the milled powders has been studied. Particle refinement and homogenization were found not to play a dominant role, whereas plastic deformation of the metal particles leads to the formation of dislocations and a highly disarranged polycrystalline structure. Although no chemical reactions among the powder components in Fe2O3/Al/Al2O3 powder mixtures were observed, the formation of a nanocrystalline, ordered intermetallic FeAl phase in Fe/Al/Al2O3 powder mixtures caused by mechanical alloying was detected. Chemical reactions of Fe and Al particle surfaces with the atmosphere and the milling media lead to the formation of highly porous hydroxides on the particle surfaces. Hence the specific surface area of the powders increases, while the powder density decreases during milling. The fraction of Fe oxidized during milling was determined to be 0.13. The fraction of Al oxidized during milling strongly depends on the metal content of the powder mixture. It ranges between 0.4 and 0.8.  相似文献   

6.
The pseudobinary system Ga2O3-Bi2- x 3+Bi x 5+O3+ x 2- was studied in view of its importance for growth of SrGa12O19 crystals from a bismuth oxide flux. A subsolidus transition of γ*-Bi2O3 to a β'-phase and a strictly stoichiometric 1:2 phase with 33.3 mol% bismuth oxide were found. The single-crystal data for the compound indicated space group P21212, with lattice constants a=0.79180±0.0003 nm, b =0.8288±0.0003 nm, and c =0.5889±0.0003 nm; the measured density was 7.1±0.3 g/cm3 and the cell content (Z) 2.  相似文献   

7.
Complex perovskite-type compounds with the general formula Pb(B+1/4B5+3/4)O3, where B+= Li+ and B5+= Nb5+ or Ta5+, were synthesized using a high-pressure technique and studied by X-ray powder diffraction. The X-ray patterns were indexed on the basis of a cubic cell with a 0= 4.071 Å for Pb(Li1/4 Nb3/4)O3 and a 0= 4.052 Å for Pb(Li1/4Ta3/4)O3. Electrical properties of the new perovskites were also studied.  相似文献   

8.
A bulk ceramic sample La0.67Sr0.33Fe0.07Mn0.93O3 (LSFMO) with a rhombohedral structure has been prepared from a coprecipitated carbonate precursor in this study. Ferromagnetism and a negative, isotropic magnetoresistance (MR) as large as 11% have been observed in a ceramic sample of LSFMO. There are two resistivity transition peaks on the resistivity versus temperature curves. The resistivity peak and MR have been related to the ferromagnetic state in LSFMO.  相似文献   

9.
The microwave dielectric properties of CaTi1− x (Al1/2Nb1/2) x O3 solid solutions (0.3 ≤ x ≤ 0.7) have been investigated. The sintered samples had perovskite structures similar to CaTiO3. The substitution of Ti4+ by Al3+/Nb5+ improved the quality factor Q of the sintered specimens. A small addition of Li3NbO4 (about 1 wt%) was found to be very effective for lowering sintering temperature of ceramics from 1450–1500° to 1300°C. The composition with x = 0.5 sintered at 1300°C for 5 h revealed excellent dielectric properties, namely, a dielectric constant (ɛr) of 48, a Q × f value of 32 100 GHz, and a temperature coefficient of the resonant frequency (τf) of −2 ppm/K. Li3NbO4 as a sintering additive had no harmful influence on τf of ceramics.  相似文献   

10.
The crystal structure of lanthanum-modified lead magnesium niobates having composition (Pb1− x La x ) (Mg(1+ x )/3-Nb(2− x )/3)O3 with X = 0 to 1 was investigated by X-ray powder diffraction. It was found that the fundamental reflections from perovskite structure remain in the whole range of composition. The superlattice reflections from the A(B'1/2-B"1/2)O3 ordered structure are also well preserved for La content greater than 50 at.%; however, a series of extra peaks of mixing indices appears, with intensities gradually enhanced with the increase of La content. For the complete substitution of Pb by La, a splitting of some reflections can be observed in the diffraction pattern. The results indicate that the crystal structure evolves continuously with the La content, from disordered cubic perovskite of space group Pm 3 m for X = 0, to ordered cubic perovskite of space group Fm 3 m for X = 0.5, distorted cubic perovskite of space group Pa 3 for 0.5 < X < 0.9, and finally to a rhombohedral perovskite, possibly belonging to the space group R 3 , for X ≥ 0.9. In the evolution of structure, a linear reduction of the lattice constant of the perovskite cell from 4.048 to 3.964 Å was observed.  相似文献   

11.
This paper reports on two new aspects of oxide perovskites: the first part is devoted to new phase transitions, especially at high temperatures; multiferroics such as BiFeO3 and Pb–Fe–W–titanate are emphasized but nonmagnetic materials such as SrSnO3 are included. The work summarized on bismuth ferrite emphasizes its metal–insulator transition near 1200 K (atmospheric pressure) and 47 GPa (room temperature); that on SrSnO3 emphasizes order–disorder phase transitions; and that on lead–iron tungstate–titanate exhibits a classic second-order ferroelectric phase transition, of which rather few are known in the literature. The second part of the paper presents a discussion of constant phase elements for oxide perovskite ceramics; this is a modern way of characterizing their dielectric relaxation, particularly near phase transition temperatures.  相似文献   

12.
Sodium bismuth titanates Na1/2Bi1/2TiO3 (NBT) doped with 0–3 wt% Er2O3 were prepared by the conventional solid-state reaction method. The X-ray diffraction results revealed that the sintered Er-doped NBT ceramics exhibited a pure perovskite structure with Er3+ concentrations ranging from 0 to 1 wt%. At a low Er2O3 concentration, the Er-doped NBT ceramics showed enhanced electrical properties with dielectric constant ɛ33T0=636, a low dielectric dissipation factor (tan δ=3.3%), a low coercive field ( E c=4.56 kV/mm), and a high piezoelectric constant ( d 33=75 pC/N). The relationship between the composition and properties of Er-doped NBT ceramics has been discussed.  相似文献   

13.
Changes in Fe---Mn---SO42−/ZrO2 catalyst formulations during activation have been observed. In air or an inert gas, the added salt, such as iron and/or manganese nitrate, decomposes over a temperature range of about 200–400°C to produce nitric oxide, oxygen and iron and/or manganese oxide. The crystallization of zirconia occurs at 450°C; when the sample contains sulfate the exothermic event occurs at a temperature that is about 200°C higher. Heating in the presence of hydrogen causes the evolution of nitric oxide to occur over a narrow temperature range and at a lower temperature than when the sample is heated in helium or air. It appears that the nitrate ions associated with Fe, Mn and Zr decompose to produce nitric oxide, and presumably water, at different temperatures when the sample is heated in the presence of hydrogen. Heating samples of sulfated zirconia containing iron and/or manganese in hydrogen causes sulfur evolution at a lower temperature, and a significant fraction of it in the form of H2S.  相似文献   

14.
A complete range of perovskite solid solutions can be formed in the (1 − x )Ba(Mg1/3Nb2/3)O3- x La(Mg2/3Nb1/3)O3 (BMN-LMN) pseudobinary system. While pure BMN adopts a 1:2 cation ordered structure, 1:1 ordered phases are stabilized for 0.05 ≤ x ≤ 1.0. Dark-field TEM images indicate that the La-doped solid solutions are comprised of large 1:1 ordered domains and no evidence was found for a phase-separated structure. This observation coupled with the systematic variations in the intensities of the supercell reflections supports a charge-balanced "random-site" model for the 1:1 ordering. The substitution of La also induces a transformation from a negative to positive temperature coefficient of capacitance in the region 0.25 ≤ x ≤ 0.5.  相似文献   

15.
Ta0.33Ti0.33Nb0.33C and Ta0.33Ti0.33Nb0.33C x N1− x whiskers were synthesized via a carbothermal vapor-liquid-solid growth mechanism in the temperature range 900°-1450°C in Ar or N2. The optimum temperature was 1250°C. Whiskers were obtained in a yield of 70-90 vol%. The whiskers were 0.5–1 µm in diameter and 10–30 µm in length. The starting materials that produced the highest whisker yield were: TiO2, Ta2O5, Nb2O5, C, Ni, and NaCl. C was added to reduce the oxides, and Ni to catalyze whisker growth. NaCl was used as a source of Cl for vapor-phase transportation of Ta and Nb oxochlorides and Ti chlorides to the catalyst. The catalyst metal was recycled several times during the synthesis and was transported as NiCl2( g ) according to thermodynamic calculations. The rate of formation and the chemical composition of the whiskers depended on the synthesis temperature, the choice of catalyst, and the atmosphere. At low temperatures, the whiskers were enriched in Nb and Ta, whereas the Ti content increased with increased synthesis temperature.  相似文献   

16.
Compact swelling in Pb-doped Bi-Sr-Ca-Cu-O superconductor has been studied by observing the effects of the size of calcined powders, volatilization of materials, and sintering of high- T c (2223) powders. The bulk density increases at the early stage of sintering, for about 20 h, and then decreases. Densification occurs when the low- T c (2212) phase and a liquid phase exist, whereas dedensification occurs with the formation of the 2223 phase regardless of the presence of the liquid. Gas evolution from specimens does not appear to be responsible for compact swelling. Compact swelling is explained by anisotropic growth of thin, platelike 2223 grains in random orientation. When 2223 grains grow in a preferred direction, compact swelling is suppressed.  相似文献   

17.
The order-disorder phase formation of the complex perovskite compounds Ba(Ni1/3Nb2/3)O3 (BNN) and Ba(Zn1/3-Nb2/3)O3 (BZN) was investigated using X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and energy-dispersive spectroscopy. The BNN and BZN samples were sintered over a temperature range of 1200° to 1500°C in air for 2 h. X-ray diffraction and transmission electron microscopy showed that these compounds exhibited a 1:2 ordering on the B-site within a narrow temperature range. When BNN and BZN were sintered above 1400° and 1350°C, respectively, a liquid phase formed in the grain boundary which was accompanied by disordering. The composition of the liquid phase resembled that of pyrochlore, with a small amount of nickel for BNN or zinc for BZN. The disordering with the formation of the liquid phase was attributed to the increase in defect concentration.  相似文献   

18.
Single crystals of superlattice-structured ferroelectrics composed of Bi4Ti3O12 and PbBi4Ti4O15 were grown and the properties of polarization hysteresis and leakage current along the a -axis were investigated. Oxidation treatment led to a marked increase in leakage current at room temperature, showing that electron hole acts as a detrimental carrier for electrical conduction. A well-developed polarization hysteresis with a remanent polarization of 41 μC/cm2 was observed, which is suggested to originate from the peculiar ferroelectric displacement of Bi in the Bi2O2 layers.  相似文献   

19.
B6O is a possible candidate of superhard materials with a hardness of 45 GPa measured on single crystals. Up to now, densification of these materials was only possible at high pressure. However, recently it was found that Al2O3 can be utilized as an effective sintering additive, similar to the addition of Y2O3/Al2O3 that was used in this work. The densification behavior of the material as a function of applied pressure, its microstructure evolution, and the resulting mechanical properties were investigated. A strong dependence of the densification with increasing pressure was found. The material revealed characteristic triple junctions filled with amorphous residue composed of B2O3, Al2O3, and Y2O3, while no amorphous grain-boundary films were observed along internal interfaces. Mechanical testing revealed on average a hardness of 33 GPa, a fracture toughness of 4 MPa·m1/2, and a strength value of 520 MPa.  相似文献   

20.
A novel Mg2Zr5O12-based coating on magnesium was formed by microarc oxidation (MAO) in a K2ZrF6-containing electrolyte. The structure of the coating was examined by X-ray diffraction using the grazing angle method, scanning electron microscopy, and transmission electron microscopy. The friction and wear properties of the MAO-coated and -uncoated Mg samples were evaluated in a ball-on-disk testing system. The corrosion resistance of the coating in a 3.5% NaCl solution was investigated by the potentiodynamic polarization test. The coating is relatively dense and composed of a Mg2Zr5O12–ZrO2–MgF2 inner layer and a nanocrystalline Mg2Zr5O12 outer layer with a maximum hardness of 1240 Hv. The friction coefficient of the coating against Si3N4 is 0.35 under a dry-sliding condition. The corrosion resistance of the magnesium substrate is improved considerably by MAO treatment. The corrosion potential of the Mg2Zr5O12-coated sample is −1.43 V with a current density as low as 7.06 × 10−8 A/cm2. It is expected that the coating can considerably protect magnesium from wear and corrosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号