首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work we fabricated white LEDs using a blue InGaN LED precoated conjugated copolymer/quantum dots (QDs) composite (green-emitting Poly {(9,9-dioctyl-2,7-divinylenefluorenylene)-alto-co-(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene)}/red-emitting CdSe quantum dots) as a hybrid phosphor. The emission peak wavelengths of the blue and red emissions in the spectra were 462 and 618 nm, respectively. The green-emitting polymer had two emission peaks at 515 and 543 nm. The subpeak of the copolymer (515 nm) was decreased by the absorption of QDs as the ratio of QDs increased, while the emission of the QD (618 nm) increased. Therefore, changes in the CIE-1931 coordinate, color temperature (Tc) and color-rendering index (Ra) were dependent on the QDs to copolymer ratios. The white LED of the hybrid phosphor containing 20 wt.% QDs had a luminous efficiency of 44.2 l m/W at 20 mA with a CIE-1931 coordinate, Tc and Ra of (0.3297, 0.3332), 5620 K and 75.3, respectively.  相似文献   

2.
To improve the chroma of red phosphor for plasma display panels, Eu3+ activated phosphors were prepared by combustion method, and were investigated in detail by XRD and PL spectra. With the decreasing of the amount of H3BO3, the phosphor crystal structures transform from hexagonal ortho-borate to monoclinic RE3BO6, and then to cubic oxide. The dominating emissions of the phosphors also change from 5D07F1 transition to 5D07F2 transition. Accordingly, CIE coordinates of the phosphors show that x values are increasing while y values are decreasing. Thus, phosphor with higher color purity could be achieved by adjusting the mole ratio of H3BO3.  相似文献   

3.
The fabrication of NbTi material for superconducting applications requires a well-established quality assurance system. The development of defects in the rods and billets can be reduced by closely monitoring important process variables, such as the raw materials, melting procedure, heat treatment and surface condition. Imperfections can be pinpointed by ultrasonic inspection, eddy current methods and hardness testing.  相似文献   

4.
Orange-reddish-emitting phosphor AlPO4:Eu3+ were fabricated by solid-state reactions at high temperature. X-ray diffraction analysis revealed that AlPO4 doped with 3 mol% of Eu3+ (AlPO4:0.03Eu3+) was pure orthorhombic phase. The photoluminescence study shows that the intensity of magnetic dipole transition (5D0 → 7F1) at 594 nm dominates over that of electric dipole transition (5D0 → 7F2) at 613 nm. The optimum concentration of Eu3+ for the highest luminescence is found to be 3 mol%. The PL excitation spectrum is composed of CTB of Eu-O and excitation lines of Eu3+ ions. The strongest excitation lines appeared at 392 nm. The color coordinates, quantum yield and lifetime for AlPO4:0.03Eu3+ were measured. All the spectrum features indicate that AlPO4:Eu3+ might be a promising phosphor for display devices or w-LEDs.  相似文献   

5.
A polymerizable arcyl group was incorporated into modified 4-N,N-diphenyl-9-(4-tert-butylphenyl)-1,8-naphthalimide (DBN), and the resulting compound (P-DBN) was copolymerized with methyl methacrylate (MMA) to obtain the corresponding copolymer (PMMA-co-DBN). A DBN/PMMA blend film underwent phase separation upon heating, while PMMA-co-DBN did not exhibit the phase separation problem under the same conditions. However, the fluorescence quantum yield (Фrel) of P-DBN was much lower (65%) than that of free DBN, and the Фrel of PMMA-co-DBN (36%) was lower still. The luminescent output power of a luminescence conversion light-emitting diode (LUCO LED), fabricated using PMMA-co-DBN, was not detectably changed during 288 h of operation at 20 mA, due to adequate stability of the copolymer under the experimental conditions.  相似文献   

6.
Eu2+/Sm3+ co-doped silicate glass was prepared by high temperature melting under reducing atmosphere and the Eu2+/Sm3+ co-doped SrSiO3 transparent glass-ceramics were obtained after heat-treatment. X-ray diffraction (XRD) and Raman spectra confirmed the formation of SrSiO3 nano-crystals in the glass matrix. The photoluminescence excitation (PLE) spectra and photoluminescence (PL) spectra of the samples were measured. A broad emission band from 400 nm to 550 nm due to the 4f65d1 → 4f7 transitions of Eu2+ was observed, as well as several sharp emission peaks at 563 nm, 600 nm, 646 nm and 713 nm ascribed to the 4f → 4f transitions of Sm3+. The luminescence properties of the glass ceramics with different molar ratio of Eu2+/Sm3+ were studied and the corresponding chromaticity coordinates were calculated. The ultraviolet light-emitting diode (UV-LED) excitable glass-ceramics emitting white light were obtained by tuning the relative emission intensity of Eu2+ and Sm3+. The results indicate that the Eu2+/Sm3+ co-doped SrSiO3 transparent glass-ceramics can be used as a potential matrix material for White LED under UV-LED excitation.  相似文献   

7.
This paper deals with a slender micropin, which can be used for micromachining. The shaping mechanism in electrochemical etching is investigated on the basis of electrochemical kinetics. The pin profile can be controlled by adjusting the current and voltage level. A mathematical model is derived for controlling the diameter of the micropin.  相似文献   

8.
A reuse fabrication module using micro electrochemistry (MECM) with a round-ball tool to remove the defective In2O3 SnO2 thin film from the surfaces of digital paper display was presented.The etching effect improves that the number of the round-balls decreases for promoting the concentration of electric power and increasing discharge space.Using a small size of the round-ball tool takes less time for the same amount of In2O3 SnO 2 layer removal since the effect of MECM is easily developed for supplying of sufficient electrochemical power.A higher feed rate of the poly ethylene terephthalate (PET) diaphragm combines with enough electric power to drive fast etching rate.A pulsed direct current can improve the effect of dreg discharge and is advantageous to couple this current with the fast feed rate of the workpiece.Through the ultra-precise etching of In2O 3 SnO2,the optoelectronic semiconductor industry can effectively reuse the defective products,reducing production costs.This precision etching process is of high efficiency and requires only a short period of time to remove the In2O3 SnO2 nanostructures.  相似文献   

9.
10.
Waste aluminate rare earth phosphor is an important rare earth elements(REEs) secondary resource,which mainly consists of BaMgAl_(10)O_(17):Eu~(2+)(BAM) and CeMgAl_(11)O_(19):Tb~(3+)(CMAT). Alkaline fusion process is widely used to recycle REEs from aluminate phosphor, but the related theory remains imperfect. In this paper,a series of alkaline fusion experiments of CMAT were performed to describe the phase change law of CMAT reactions.Based on comprehensive analysis, cation-oxoanion synergies theory(COST) was proposed to explain the aluminate phosphor structure damage. On the mirror plane of aluminate phosphor crystal structure, alkali metal cations(Na~+, K~+) would substitute rare earth ions, while free oxoanion(OH~-,CO_3~(2-),O_2~(2-)) can combine with rare earth ions. These two ionic forces ensure that rare earth ions can be substituted by cations. Then, the structure is decomposed. Morphological analysis shows that observable expression of COST can be described by shrinking core model after simplification. Reaction rate constant calculated indicates that the reaction degree is nanometers per second. COST provides a more complete mechanism, and it can help improve rare earth recycling technology furtherly.  相似文献   

11.
Eu2+-activated Sr2SiO4 phosphor was successfully synthesized by a sol–gel method using sodium silicate and SrO as the starting materials. The wavelength of the emission peak and the emission intensity of the phosphor powders were influenced by the pre-treating temperature. The maximum emission intensity of the phosphor was found as pre-treated at 1200 °C in air and then heated at 1300 °C in the reducing atmosphere (10% H2 + 90% He). As the pre-treating temperature was <1200 °C, the composition of the phosphor powder was not uniform, which leads to decrease of the emission intensity, whereas >1200 °C, the decrease of the emission intensity may be caused from the reversible phase transformation of Sr3SiO5  Sr2SiO4 at 1300 °C, which also shows the red-shift behavior.  相似文献   

12.
BaMgAl10O17:Eu blue phosphors were synthesized and the effect of doping er3+ and Nd3+ ions in the phosphor on the luminescent properties was investigated. When the content of Er3+ and Nd3+ ions is small, the phosphor remains single phase and the luminescent intensity of Eu2+ increases effectively. When Er3+ is doped, the shape of the excitation spectrum of the phosphor in the UV (ultraviolet) region remains unchanged. As Nd3+ is doped in the phosphor, the location and intensity of the two excitation peaks, and the emission intensity ratio excited by corresponding UV change dramatically owing to the alternation of crystal field splitting and level barycenter of 4f65d configuration of Eu2+ ion.  相似文献   

13.
The first step in the evaluation of geometric characteristics is to establish the related datums. Correct establishment of datums is vital to the accurate evaluation of related geometric errors. ASME Y14.5.1M-1994 standard specifies a procedure for the establishment of candidate datum set for a nominally flat datum feature. Implementation of this procedure is not a trivial task. In this paper, an efficient and accurate algorithm for the implementation of the above-mentioned procedure is presented. The algorithm has been implemented and is evaluated for its ability to provide accurate results quickly.  相似文献   

14.
Strontium aluminate long persistence phos phors are synthesized by combustion method. By control- ling the raw material ratio (Sr/Al), the effects of phase composition on subsequent spectroscopic properties of phosphors are studied. Results show that the phase com-position changes from strontium-rich phase to aluminum- rich phase with the decrease of Sr/AI: when the rate of Al/Sr changes from 3:1 to 1:1, the main crystal phase of samples is Sr3Al206, and it exhibits the characteristic fluorescence of Eu^3+ in the lattice of Sr3Al206; when the rate of Al/Sr is between 1:2 and 2:7, phase composition is the mixture of SrAl204 and SrAl4OT, and it emits the characteristic fluorescence of Eu^2+ in SrAl204 but not in SrAl4OT; when Al/Sr decreases to 1:4 or even 1:12, the main crystal phase of samples transform into SrAl12019, and the characteristic emission peak is about 470 nm, which corresponds to the characteristic emission of Eu2+ in SrAl12019. At the end of the article, the influence laws of two different synthesis methods on phase composition of samples between high-temperature solid method and combustion method are compared. Compared with the high-temperature solid method, the rule of influence is similar, but the mole ratio of Al/Sr in products is always higher than the initial ratio of the raw material, and com-pounds like Sr4Al14025 are not obtained by combustion method.  相似文献   

15.
Superfine powder of Tb3+ ion-doped aluminates phosphors, GdSrAl3O7:Tb3+ was synthesized with a precursor prepared by an EDTA-sol–gel method at 900 °C. Field-emission scanning electron-microscopy (FE-SEM) observation indicated a narrow size-distribution of about 150–300 nm for the particles with elliptical shape. Upon excitation with vacuum ultraviolet (VUV) and near UV light excitation, the phosphors show a strong emission line at around 542 nm corresponding to the 5D4 → 7F5 transition of Tb3+, and the highest PL intensity at 542 nm was found at a content of about 12 mol% Tb3+. As the Tb3+ concentration increases, Tb ions strongly cross-relaxation interact resulting in a decrease of the lifetime. The results reveal that GdSrAl3O7:Tb3+ would be a promising green phosphor for PDP application.  相似文献   

16.
Chatter stability predictions catch much attention during machining operations in modern automotive and aerospace industry. This paper presents a novel time domain semi-analytical method for milling stability prediction based on linear acceleration approximation. Firstly, the milling dynamics considering the regenerative effect is presented as a linear time-delay system with periodic coefficients. The second step is to equally discretize the time duration of the forced vibration of the tooth passing period into small intervals where acceleration of the flexible cutter is approximated by linearly interpolating between the two boundary values, while the free vibration is analytically solved. Then, recursive formulas with constant recursive matrices are found for the presentation of relations between initial and final cutter motions (including position, velocity and acceleration) of each small time interval. Employing the method of weighted residuals over each time interval, discrete maps are constructed which relate motions of a period to the corresponding values one period earlier. Finally, the eigenvalues of the transition matrix are used to determine stability based on Floquet theory. By using the benchmark examples in literatures, the convergence and computational time of the proposed method are compared with those of the semi-discretization methods (SDMs), full-discretization method (FDM) and numerical integration method (NIM). The results verify the validity of the proposed approach, and the presented method is proved to be computationally highly efficient.  相似文献   

17.
《Synthetic Metals》2005,155(2):299-302
We present detailed continuous wave (cw) and transient photoinduced absorption (PA) measurements in thin films of a novel alternating polyfluorene copolymer, poly[2,7-(9,9-dioctyl-fluorene)-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3-benzo-thiadiazole)] (DiO-PFDTBT), and its blends with the soluble fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) in weight ratios of 1:0, 4:1 and 1:4. We measure the frequency, intensity and temperature dependence of the PA signal in the frequency domain, and compare with the results obtained from the transient PA decay measurements in the time domain. In all blends, the PA spectrum shows a broad high energy PA band ranging from ∼1 eV to 2 eV as well as a low energy band peaking at ∼0.35 eV. We attribute the low energy band to the P1 transition of polarons and part of the high energy band to the correlated P2 transition of polarons. Both frequency and time domain measurements show that the high energy band has two decay components, a faster component in the microsecond time regime and a slower component in the millisecond time regime. The slow component is strongly dispersive, whereas the fast component is practically non-dispersive.  相似文献   

18.
由MgSO4废液制备球形花状Mg(OH)2,并评估其对重金属离子的吸附性能。合适的制备条件为Mg2+浓度2 mol/L、Mg2+/NH4OH摩尔比1:0.5、温度120℃和时间1h。由超薄片组成的球形花状Mg(OH)2对重金属离子具有良好的吸附能力,6min即可达到吸附平衡。20℃时Mg(OH)2对Ni2+、Cu2+、Zn2+、Pb2+、Fe3+和Co2+的最大吸附量分别为58.55、85.84、44.94、485.44、625.00和27.86 mg/g。吸附过程符合Langmuir模型,为单分子层吸附。吸附动力学符合准二级动力学模型,化学吸附是其作用机制。球形花状Mg(OH)2是合格的重金属离子吸附材料。  相似文献   

19.
20.
The novel red-emitting phosphors K2Ba(MoO4)2: Eu3+, Sm3+ were prepared by solid-state reaction and their crystal structures, photo luminescent characteristics were investigated. The results show that all samples can be excited efficiently by UV (397 nm) and blue (466 nm) light, which are coupled well with the characteristic emission from UVLED and blue LED, respectively. A small amount of Sm3+, acting as a sensitizer, increased the energy absorption around 400 nm. In the Eu3+-Sm3+ co-doped system, both Eu3+ and Sm3+ f-f transition absorptions are observed in the excitation spectra, the intensities of the main emission line (5D0 → 7F2 transition of Eu3+ at 616 nm) are strengthened because of the energy transition from Sm3+ to Eu3+. The doping concentration of Eu3+-Sm3+ was optimized. The approach to charge compensation was used: Ba2+ → Eu3+/Sm3+ + X (X = F, Cl, and Br), and the influence of charge compensation on the luminescent intensity of phosphors is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号