首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In earlier work [1], NIST developed a climate suitability analysis method to evaluate the potential of a given location for direct ventilative cooling and nighttime ventilative cooling. The direct ventilative cooling may be provided by either a natural ventilation system or a fan-powered economizer system. The climate suitability analysis is based on a general single-zone thermal model of a building configured to make optimal use of direct and/or nighttime ventilative cooling. This paper describes a new tool implementing this climate suitability methodology and its capability to consider an adaptive thermal comfort option and presents results from its application to analyze a variety of U.S. climates. The adaptive thermal comfort option has the potential to substantially increase the effectiveness of natural ventilation cooling for many U.S. cities. However, this impact is very dependent on the acceptable humidity range. If a dewpoint limit is used, the increase is significant for a dry climate such as Phoenix but much smaller for humid climates such as Miami. While ASHRAE Standard 55 does not impose a limit on humidity when using the adaptive thermal comfort option, the necessity of limiting humidity for other reasons needs to be considered.  相似文献   

2.
Standards governing thermal comfort evaluation are on a constant cycle of revision and public review. One of the main topics being discussed in the latest round was the introduction of an adaptive thermal comfort model, which now forms an optional part of ASHRAE Standard 55. Also on a national level, adaptive thermal comfort guidelines come into being, such as in the Netherlands. This paper discusses two implementations of the adaptive comfort model in terms of usability and energy use for moderate maritime climate zones by means of literature study, a case study comprising temperature measurements, and building performance simulation. It is concluded that for moderate climate zones the adaptive model is only applicable during summer months, and can reduce energy for naturally conditioned buildings. However, the adaptive thermal comfort model has very limited application potential for such climates. Additionally we suggest a temperature parameter with a gradual course to replace the mean monthly outdoor air temperature to avoid step changes in optimum comfort temperatures.  相似文献   

3.
In harsh climatic regions, buildings require air-conditioning in order to provide an acceptable level of thermal comfort. In many situations buildings are over cooled or the HVAC system is kept running for a much longer time than needed. In some other situations thermal comfort is not achieved due to improper operation practices coupled with poor maintenance and even lack it, and consequently inefficient air-conditioning systems. Mosques represent one type of building that is characterized by their unique intermittent operating schedule determined by prayer times, which vary continuously according to the local solar time. This paper presents the results of a study designed to monitor energy use and thermal comfort conditions of a number of mosques in a hot-humid climate so that both energy efficiency and the quality of thermal comfort conditions especially during occupancy periods in such intermittently operated buildings can be assessed accurately.  相似文献   

4.
Annual primary energy use in a central module of an office building consisting of two offices separated with a corridor was estimated by means of dynamic computer simulations. The simulations were conducted for conventional all-air VAV ventilation system and thermo active building system (TABS) supplemented with CAV ventilation. Simulations comprised moderate, hot–dry and hot–humid climate. Heavy and light wall construction and two orientations of the building (east–west and north–south) were considered. Besides the energy use, also capability of examined systems to keep a certain level of thermal comfort was examined. The results showed that with the moderate climate, the TABS decreased the primary energy use by about 16% as compared with the VAV. With hot–humid climate, the portion of the primary energy saved by TABS was ca. 50% even with the supply air dehumidification taken into account. The TABS working in a moderate climate kept the predicted percentage of dissatisfied (PPD) <10% during 60–80% of the working hours per year. Optimization of the TABS's control strategy (circulation pump dead-band, water supply temperature) resulted in significant reduction of the annual working hours with PPD > 10%; 1.4% in comparison to 17.5% h/yr. The highest estimated loss of occupants’ productivity related to their thermal sensation hasn’t exceeded 1% in whole year average.  相似文献   

5.
The knowledge of building stock energy data of a country is a very significant tool for energy benchmarks establishment, energy rating procedures and building classification boundaries determination, according to the Directive 2002/91/EC and its implementation in EU Member States. The lack of building energy databases in many EU Countries, including Greece, and the difficulties of collecting them lead to the investigation of other potential solutions. The aim of this paper is to present a method of a Virtual Building Dataset (VBD) creation for office buildings in Greece. The philosophy of VBD is based on the creation and simulation of random office buildings that could be found or built in Greece, taking into account the Greek constructional and operational characteristics of office buildings and Greek legislation. The VBD consists of 30,000 buildings (10,000 in each climatic zone) with their detailed constructional and operational data and of their simulation outputs: the annual specific energy consumption for heating, cooling, artificial lighting, office equipment and an indoor thermal comfort indicator. Based on VBD results the energy and indoor thermal comfort benchmarks for office building sector in Greece are assessed and presented.  相似文献   

6.
This investigation of the window-opening data from extensive field surveys in UK office buildings demonstrates: (1) how people control the indoor environment by opening windows; (2) the cooling potential of opening windows; and (3) the use of an ‘adaptive algorithm’ for predicting window-opening behaviour for thermal simulation in ESP-r. It was found that when the window was open the mean indoor and outdoor temperatures were higher than when closed, but it was shown that nonetheless there was a useful cooling effect from opening a window. The adaptive algorithm for window-opening behaviour was then used in thermal simulation studies for some typical office designs. The thermal simulation results were in general agreement with the findings of the field surveys. The adaptive algorithm is shown to provide insights not available using non adaptive simulation methods and can assist in achieving more comfortable, lower energy buildings while avoiding overheating.  相似文献   

7.
Radiant heating systems are increasingly widely utilized in buildings for its energy conservation potential and enhanced thermal comfort. This paper presented an experiment to compare the thermal comfort performance of radiant heating system with convective heating system through objective measurement and subjective survey. Six physical parameters which might influence occupants' thermal satisfaction, including the Mean Radiant Temperature(MRT), humidity, air movement, A-weighted sound level,temperature fluctuation and vertical temperature difference, were measured. In addition, 97 subjects participated in the subjective survey part of this experiment, experiencing all the three environments heated by air source heat pump, radiator and floor heating.And they were asked to vote in six thermal comfort related aspects, i.e. thermal sensation, humidity, draught, local discomfort,overall thermal satisfaction and overall preferences, plus the acoustic environment, since the operation noise of heating system might lead to complains of the occupants. It was found that in continuous heating, no significant difference between radiant and convective heating system was observed in the Mean Radiant Temperature(MRT), indoor humidity and noise issue. Though radiant heating systems resulted in lower draught risk and less local discomfort complains in the feet region due to the less significant temperature fluctuations and vertical temperature gradients, radiant heating did not have significantly higher overall thermal satisfaction votes and was not significantly more preferred by occupants.  相似文献   

8.
With the actual environmental issues of energy savings in buildings, there are more efforts to prevent any increase in energy use associated with installing air-conditioning systems. The actual standard of thermal comfort in buildings ISO 7730 is based on static model that is acceptable in air-conditioned buildings, but unreliable for the case of naturally ventilated buildings. The different field studies have shown that occupants of naturally ventilated buildings accept and prefer a significantly wider range of temperatures compared to occupants of air-conditioned buildings. The results of these field studies have contributed to develop the adaptive approach. Adaptive comfort algorithms have been integrated in EN15251 and ASHRAE standards to take into account the adaptive approach in naturally ventilated buildings. These adaptive algorithms seem to be more efficient for naturally ventilated buildings, but need to be assessed in field studies. This paper evaluates different algorithms from both static and adaptive approach in naturally ventilated buildings across a field survey that has been conducted in France in five naturally ventilated office buildings. The paper presents the methodology guidelines, and the thermal comfort algorithms considered. The results of application of different algorithms are provided with a comparative analysis to assess the applied algorithms.  相似文献   

9.
The objective of this study was to develop an adaptive thermal comfort equation for naturally ventilated buildings in hot-humid climates. The study employed statistical meta-analysis of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) RP-884 database, which covered several climatic zones. The data were carefully sorted into three climate groups including hot-humid, hot-dry, and moderate and were analyzed separately. The results revealed that the adaptive equations for hot-humid and hot-dry climates were analogous with approximate regression coefficients of 0.6, which were nearly twice those of ASHRAE and European standards 55 and EN15251, respectively. The equation using the daily mean outdoor air temperature had the highest coefficient of determination for hot-humid climate, compared with other mean temperatures that considered acclimatization of previous days. Acceptable comfort ranges showed asymmetry and leaned toward operative temperatures below thermal neutrality for all climates. In the hot-humid climate, a lower comfort limit was not observed for naturally ventilated buildings, and the adaptive equation was influenced by indoor air speed rather than indoor relative humidity. The new equation developed in this study can be applied to tropical climates and hot-humid summer seasons of temperate climates.  相似文献   

10.
Sustainable low-energy office buildings attempt to harness the buildings architecture and physics to provide a high quality working environment with the least possible primary energy consumption. A promising approach to condition those buildings in summer employs the utilization of the building's thermal storage activated by natural heat sinks (e.g., ambient air, ground water or soil) through night ventilation or thermally activated building systems (TABS). However, a certain room temperature cannot be guaranteed as occupants may influence the room energy balance by window opening, internal heat gains or sun shading control. Between 2001 and 2005, monitoring campaigns were carried out over 2 or 3 years in 12 low-energy office buildings which are located in three different summer climate zones in Germany. These climate zones are defined as summer-cool, moderate and summer-hot. The weather at the building site and the room temperatures in several office rooms were monitored by different scientific teams. The raw data are processed for data evaluation using a sophisticated method to remove errors and outliers from the database and to identify the time of occupancy. The comfort in all office rooms in each building is evaluated separately. For data presentation, these separate comfort votes per office room are averaged using the median instead of the arithmetic mean in order not to overestimate extremely cold or hot room temperatures. A comfort evaluation in these 12 low-energy office buildings indicates clearly, that buildings which use only natural heat sinks for cooling provide good thermal comfort during typical and warm summer periods in Germany. However, long heat waves such as during the extreme European summer of 2003 overstrain passively cooled buildings with air-driven cooling concepts in terms of thermal comfort.  相似文献   

11.
This work, part of a wider study, presents a qualitative and quantitative approach to evaluate daylighting systems for use in office buildings located in latitudes where natural luminous conditions throughout the year are of high solar radiation, as in Israel. Their widespread application in this kind of climate, where the excessive penetration of direct radiation can be a problem, is possible. They can produce a consequent improvement of working conditions and energy savings, yet this is not the case now.  相似文献   

12.
A two-storey rammed earth building was built on the Thurgoona Campus of Charles Sturt University in Albury-Wodonga, Australia, in 1999. The building is novel both in the use of materials and equipment for heating and cooling. The climate at Wodonga can be characterised as hot and dry, so the challenge of providing comfortable working conditions with minimal energy consumption is considerable. This paper describes an evaluation of the building in terms of measured thermal comfort and energy use. Measurements, confirmed by a staff questionnaire, found the building was too hot in summer and too cold in winter. Comparison with another office building in the same location found that the rammed earth building used more energy for heating. The thermal performance of three offices in the rammed earth building was investigated further using simulation to predict office temperatures. Comparisons were made with measurements made over typical weeks in summer and winter. The validated model has been used to investigate key building parameters and strategies to improve the thermal comfort and reduce energy consumption in the building. Simulations showed that improvements could be made by design and control strategy changes.  相似文献   

13.
A great amount of world energy demand is connected to the built environment. Electricity use in the commercial buildings, accounts for about one-third of the total energy consumption in Turkey and fully air-conditioned office buildings are important commercial electricity end-users since the mid-1990s. In the presented paper, the interactions between different conditions, control strategies and heating/cooling loads in office buildings in the four major climatic zones in Turkey – hot summer and cold winter, mild, hot summer and warm winter, hot and humid summer and warm winter – through building energy simulation program has been evaluated. The simulation results are compared with the values obtained from site measurements done in an office building located in Istanbul. The site-recorded data and simulation results are compared and analyzed. This verified model was used as a means to examine some energy conservation opportunities on annual cooling, heating and total building load at four major cities which were selected as a representative of the four climatic regions in Turkey. The effect of the parameters like the climatic conditions (location), insulation and thermal mass, aspect ratio, color of external surfaces, shading, window systems including window area and glazing system, ventilation rates and different outdoor air control strategies on annual building energy requirements is examined and the results are presented for each city.  相似文献   

14.
《Energy and Buildings》2002,34(6):653-659
Thermal models of the human body and its interactions with the surrounding thermal environment are often proposed, and to some extent are used, as the basis for thermal comfort standards. These models range from simple, one-dimensional, steady-state simulations to complex, transient, finite element codes with thousands of nodes. The models are potentially very useful in that they provide a straightforward means to incorporate the numerous physical variables that affect comfort. Some models can be applied to complex situations which would be difficult, if not impossible, to reflect in simple charts or equations. Whether simple or complex, all of these models have limitations for use in standards. These limitations include the accuracy of the physical simulation and the accuracy of the inputs to the model. Perhaps, the biggest limitation is the accuracy with which comfort perceptions can be related to the physiological variables simulated in the thermal models.  相似文献   

15.
办公楼建筑窗际热环境的改善和节能   总被引:4,自引:4,他引:4  
从办公建筑的热舒适出发,说明了改善窗际热环境的必要性,指出除通过建筑构造来改善外,空调分内外区是常用的手法,但会带来能量混合损失。介绍了一些可以不设外区空调系统而又能改善窗际热环境的空调措施。  相似文献   

16.
In the last few years many advanced computer packages, characterised by a considerable integration between thermal and visual aspects, were developed to support designers and to study building energy performance, innovative materials and daylight control strategies and systems. These packages, as a function of their complexity and final use, require different types of outdoor data, ranging from monthly (MTD) or seasonal typical days (STD) to more complex typical meteorological years (TMY).Both the deterministic and the stochastic components of outdoor data are present in TMYs, while MTDs and STDs take into account only the deterministic component. The use of MTDs or STDs produces a sensible reduction of the calculation time, above all appreciable in the first phase of the building design process, although it introduces an element of uncertainty in simulation results due to the absence of the stochastic component of outdoor data. This uncertainty is not easily predictable, as reported by many authors.The aim of the present work is to investigate the influence of the stochastic component of meteorological data in evaluating office building energy performance in Mediterranean climate. The study is performed by an advanced numerical computer package, Integrated ENergy Use Simulation (IENUS), which can process different types of climatic data. Different typologies, systems and space managements are investigated.  相似文献   

17.
Windows are one of the major means by which building occupants control the indoor environment. This research uses results from field surveys to formulate a method for simulation of office buildings to include the effects of window opening behaviour on comfort and energy use. The paper focuses on: (1) what is general window opening behaviour? (2) how can we frame an “adaptive algorithm” to predict whether windows are open? (3) how can the algorithm be used within a simulation to allow the effects of window opening on comfort and energy use to be quantified? We have found that: (1) the proportion of windows open depends on indoor and outdoor conditions, (2) logistic regression analysis can be used to formulate an adaptive algorithm to predict the likelihood that windows are open, (3) the algorithm when embedded in simulation software provides insights not available using more usual simulation methods and allows the quantification of the effect of building design on window opening behaviour, occupant comfort and building energy use.  相似文献   

18.
The paper deals with an optimization of parameters, which influence the energy and investment cost as well as the thermal comfort. The parameters considered in this study are: the insulation thickness of the building envelope, the supply-water temperature and the heat exchange area of the radiators. A combination of the building energy simulation software EnergyPlus 1 and the generic optimization program GenOpt (see footnote 1) has been used for this purpose. The paper presents the application of a one-objective optimization algorithm solving the problems with two objectives, because the optimization algorithm is one-objective and the problem has two objectives, which are minimal total costs and satisfied thermal comfort. The total costs represent the sum of energy consumption and the investment costs. The thermal comfort is represented by Predicted Percentage of Dissatisfied (PPD) in this study. The optimization is used to determine the values of parameters that give the lowest sum of investment and energy cost, under the condition that the thermal comfort is satisfied. In addition, the optimization processes show the mutual influence of parameters on both the total cost and the thermal comfort.  相似文献   

19.
The incorporation of Phase Change Materials (PCMs) into the opaque envelope of lightweight buildings is a good solution to compensate for the small thermal inertia, which usually entails pronounced overheating and high space cooling load in summer. However, the position and the thickness of the PCMs, as well as their thermal properties, must be attentively selected in order to ensure their effective operation. This paper shows a comprehensive investigation about the effectiveness of a commercial PCM, available in the form of mats, when installed within drywall partition systems in air-conditioned lightweight office buildings. The study is based on dynamic simulations carried out with EnergyPlus on a typical office building, with the aim to calculate the indoor operative temperature and the cooling load under thermostatic control. The performance for the base case (without PCM) is then compared with the case where PCM mats with various thickness and melting temperature are applied. The analysis is repeated in three different locations, ranging from Southern Europe (Rome, Italy), Continental Europe (Wien, Austria) and Northern Europe (London, UK). The results of the simulations highlight that in lightweight air-conditioned office buildings PCMs contribute to attenuate the inside surface temperature peak by around 0.5 °C, while also reducing the peak cooling load by 10% or even 15%, depending on the PCM thickness and on the outdoor climate. The conclusions may help designers to make the correct choices in terms of thickness of the PCMs, scheduled rate of nighttime ventilation and value of the peak melting temperature.  相似文献   

20.
With the UK commercial sector replacing buildings at 1–1.5% per year adaptations to existing buildings are needed to maintain comfort levels, while reducing energy use and carbon emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号