首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low-grade energy is widespread. However, it cannot be utilized with high thermal efficiency directly. Following the principle of thermal energy cascade utilization, a thermoacoustic engine (TE) with a new regenerator that can be driven by multiple heat sources at different temperature levels is proposed. Taking a regenerator that utilizes heat sources at two temperatures as an example, theoretical research has been conducted on a traveling-wave TE with the new regenerator to predict its performance. Experimental verification is also done to demonstrate the benefits of the new regenerator. Results indicate that a TE with the new regenerator utilizing additional heat at a lower temperature experiences an increase in pressure ratio, acoustic power, efficiency, and exergy efficiency with proper heat input at an appropriate temperature at the mid-heater. A regenerator that uses multi-temperature heat sources can provide a means of recovering lower grade heat.  相似文献   

2.
This work aims to develop reliable laser-based measurement techniques to enable fundamental heat transfer and fluid flow studies in thermoacoustic systems. The challenge is to better understand the modes of energy transfer between the key components, such as stacks (or regenerators) and the hot and cold heat exchangers (located on two sides of the stack/regenerator structure), under the oscillatory flow conditions imposed by the acoustic field. The measurement methodologies adopted in this work include combined two-dimensional temperature and velocity field measurements using Planar Laser-Induced Fluorescence (PLIF) and Particle Image Velocimetry (PIV), respectively. These are investigated around the fins of a pair of mock-up heat exchangers placed side by side in a quarter-wavelength standing-wave acoustic resonator, to mimic the working conditions of a thermoacoustic system. The fins are kept at constant temperatures by means of resistive heating and water cooling, respectively. The velocity and temperature field distributions for 20 phases in the acoustic cycle have been obtained. The impact of the inertial, viscous and thermal effects on the time-dependent local temperature and velocity distributions is discussed. Mutual interaction between both fields is also shown. Future work towards obtaining useful heat transfer correlations in oscillatory conditions is outlined.  相似文献   

3.
An air-cooled looped thermoacoustic engine is designed and constructed, where an air-cooled cold heat exchanger (consisting of copper heat transfer block, aluminum flange, and aluminum fin plate) is adopted to extract heat and the resonant tube is spiraled and shaped to fit to the available space. Experiments have been conducted to observe how onset temperature difference and resonant frequency are affected by mean pressure, working fluid, and diameter of compliance tube. Besides, the influences of temperature difference, mean pressure, working fluid and diameter of compliance tube on pressure amplitude, output acoustic power, and thermal efficiency of the system have been investigated. The air-cooled looped thermoacoustic engine can start to oscillate at a lowest temperature difference of 46°C, with the working fluid of carbon dioxide at 2.34 MPa. A highest output acoustic power obtained is 6.65 W at a temperature difference of 199°C, with the working gas of helium at 2.58 MPa, and the thermal efficiency is 2.21%. This work verifies the feasibility of utilizing low-grade thermal energy to drive an air-cooled looped thermoacoustic engine and extends its application in the water deficient areas.  相似文献   

4.
我国的余热资源和可再生能源丰富,但部分余热资源和可再生能源分布比较分散,并存在温度和能量密度均较低的问题.基于传统能源转化技术,利用温度较低的余热资源和能量密度较低的可再生能源进行发电,会降低余热资源和可再生能源的热功转换效率.有机朗肯循环(ORC)系统可以有效利用低温热能进行发电.对于不同温度和形式的热源,采用合适的...  相似文献   

5.
Thermoacoustic technology has drawn increasing attention due to its advantages such as reliability and environmental benignity. Aiming at low‐grade heat recovery, we developed a travelling‐wave thermoacoustic electric generator consisting of a looped travelling‐wave thermoacoustic engine and a linear alternator. In order to explore the operating characteristics of the electric generator, we numerically analyzed the acoustic field characteristics with a modified model. The analysis shows that high acoustic impedance appears in all three stages, and the travelling‐wave component dominates the acoustic field of the loop, which is significant for both thermoacoustic conversion and acoustic power propagation. Furthermore, we also investigated the effects of external electric compliance, resistance, and hot end temperature on the output electric power, thermal‐electric efficiency, and other related parameters. In the experiments, a thermal‐electric efficiency of 3.7% with an output electric power of 24 W has been achieved, when the hot end temperature is 120°C. The relative Carnot efficiency can exceed 14% when the hot end temperature is between 120°C and 190°C. The promising results demonstrate the significant potential of thermoacoustic electric generation in low‐grade heat recovery.  相似文献   

6.
Bi-directional turbines combined with rotary motors may be a feasible option for developing high power thermoacoustic generators with low cost. A general expression for the acoustic characteristics of the bi-directional turbine was proposed based on theoretical derivation, which was validated by computational fluid dynamics modeling of an impulse turbine with fixed guide vanes. The structure of the turbine was optimized primarily using steady flow with an efficiency of near 70% (the shaft power divided by the total energy consumed by the turbine). The turbine in the oscillating flow was treated in a lumped-parameter model to extract the acoustic impedance characteristics from the simulation results. The key acoustic impedance characteristic of the turbine was the resistance and inertance due to complex flow condition in the turbine, whereas the capacitance was treated as an adiabatic case because of the large-scale flow channel relative to the heat penetration depth. Correlations for the impedance were obtained from both theoretical predictions and numerical fittings. The good fit of the correlations shows that these characteristics are valid for describing the bi-directional turbine, providing the basis for optimization of the coupling between the thermoacoustic engine and the turbine using quasi-one-dimensional theory in the frequency domain.  相似文献   

7.
An acoustic‐driven thermoacoustic device, which is used to investigate acoustic characteristics of a regenerator, was designed and manufactured. A model of the acoustic characteristics of the regenerator is discussed. The acoustic characteristics of the regenerator, such as acoustic impedance n, reflection coefficient , transmission loss TL, and phase angle between incident and reflected wave at x=0, were obtained by processing the experimental results with the correlation‐spectra analysis (the auto‐ and cross‐spectra) methods theoretically. Comparisons of acoustic characteristics between two cases, A (regenerator) and B (regenerator and two additional heat exchangers), are discussed. Different heating power influence on acoustic characteristics is also investigated. The results obtained will be helpful in further investigations on the regenerator model. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 34(8): 539–546, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20093  相似文献   

8.
The aim of this paper is to present the design and experimental validation process for a thermoacoustic looped-tube engine.The design procedure consists of numerical modelling of the system using DELTA EC tool,Design Environment for Low-amplitude ThermoAcoustic Energy Conversion,in particular the effects of mean pressure and regenerator configuration on the pressure amplitude and acoustic power generated.This is followed by the construction of a practical engine system equipped with a ceramic regenerator-a ...  相似文献   

9.
Research on clean and efficient energy conversion is extremely important to mitigate the high price of fossil fuel and its adverse effects on the environment. Thermoacoustic is a clean energy conversion technology that uses the conversion of acoustic to thermal energy and vice versa. However, the efficient conversion of acoustic to thermal energy using thermoacoustic systems (e.g., engine, refrigerator, or heat pump) demands research on working fluids, operational, and geometric parameters. The present study is a contribution to improve the efficiency of a thermoacoustic heat system by introducing a magnetic field perpendicular to the direction of the oscillating fluid. The major focus of this study is to examine the effect of a magnetic field on three important performance parameters: energy, heat, and work fluxes of a multi-plate thermoacoustic system. Initially, analytical expressions for the fluctuating velocity and temperature are derived from the governing continuity, momentum, and energy equations by applying the first order perturbation technique and solving these equations. The derived first order analytical equations for the fluctuating velocity and temperature enable us to calculate the energy, heat, and work fluxes and are expressed in terms of dimensionless Hartmann number (Haδ), temperature gradient ratio (Γ0), Swift number (Sw), Prandlt number (Pr), and modified Rott's and Swift's parameters (fv and fk). It is observed that the normalized energy flux density increases with increasing Haδ and Γ0 when Sw < 1.5. The heat flux and work flux densities also increase with increasing Haδ and Γ0 when Sw < 1.5 and decrease when Haδ > 1.5. The findings of this research will provide useful information to thermoacoustic system's designers for the devloepment of effieicnt magnetic thermoacoustic heat pumps.  相似文献   

10.
The aim of this paper is to present the design and experimental validation process for a thermoacoustic looped-tube engine. The design procedure consists of numerical modelling of the system using DELTA EC tool, Design Environment for Low-amplitude ThermoAcoustic Energy Conversion, in particular the effects of mean pressure and regenerator configuration on the pressure amplitude and acoustic power generated. This is followed by the construction of a practical engine system equipped with a ceramic regenerator — a substrate used in automotive catalytic converters with fine square channels. The preliminary testing results are obtained and compared with the simulations in detail. The measurement results agree very well on the qualitative level and are reasonably close in the quantitative sense.  相似文献   

11.
This work illustrates the optimization of thermoacoustic systems, while taking into account thermal losses to the surroundings that are typically disregarded. A simple thermoacoustic engine is used as an example for the methodology. Its driving component, the thermoacoustic regenerator (also referred to as the stack), is modeled with a finite element method and its dimensions are varied to find an optimal design with regard to thermal losses. Thermoacoustic phenomena are included by considering acoustic power, and viscous and capacitive losses that are characteristic for the regenerator. The optimization considers four weighted objectives and is conducted with the Nelder–Mead Simplex method. When trying to minimize thermal losses, the presented results show that the regenerator should be designed to be as short as possible. It was found that there is an optimal regenerator diameter for a given length. The results are presented for a variety of materials and weights for each objective.  相似文献   

12.
A simplified calculus model to investigate on the transverse heat transport near the edges of a thermally isolated thermoacoustic stack in the low acoustic Mach number regime is presented. The proposed methodology relies on the well-known results of the classical linear thermoacoustic theory which are implemented into an energy balance calculus-scheme through a finite difference technique. Details of the time-averaged temperature and heat flux density distributions along a pore cross-section of the stack are given. It is shown that a net heat exchange between the fluid and the solid walls takes place only near the edges of the stack plates, at distances from the ends not exceeding the peak-to-peak particle displacement amplitude. The structure of the mean temperature field within a stack plate is also investigated; this last results not uniform near its terminations giving rise to a smaller temperature difference between the plate extremities than that predicted by the standard linear theory. This result, when compared with experimental measurements available in literature, suggests that thermal effects localized at the stack edges may play an important role as sources of the deviations found between linear theory predictions and experiments at low and moderate Mach numbers.  相似文献   

13.
It has been demonstrated that the bulk of time-averaged heat transfer between the oscillating fluid and a thermoacoustic couple is concentrated towards the edges of the stack plate. Previous numerical studies which have considered thermoacoustic couples of finite thickness have used a rectangular form for the plate edge. In practice however, current manufacturing practices allow for a variety of stack edges which may improve the efficiency of heat transfer and/or reduce entropic losses. In this numerical study, the performance of a thermoacoustic couple is investigated at selected drive ratios and using a variety of stack plate edge profiles. Results indicate that stack profiles with enlarged and blunter shapes improve the rate of heat transfer at low drive ratios but retard the rate of heat transfer at higher drive ratios due to increased residence time of the fluid in contact with the stack plate. The improvement in COP through minimisation of acoustic streaming on the inside face of the stack, and increased effective cooling power by greater retention of stack thickness at the plate extremities, leads to recommendation of the Rounded edge shape profile for thermoacoustic stack plates in practical devices.  相似文献   

14.
A thermoacoustic engine (TE) converts thermal energy into acoustic power without any mechanical moving parts. It shows several advantages over traditional engines, such as simple configuration, stable operation, and environment-friendly working gas. In order to further improve the performance of a thermoacoustically driven system, methods are needed to focus the acoustic energy of a TE to its load. By theoretical analysis based on linear thermoacoustics, a novel Helmholtz resonator is proposed to increase the transmission ability of a TE, which makes full use of the interaction between inertance and compliance effects. With this configuration, the output pressure amplitude of a TE is amplified and the maximal pressure amplitude can occur at the end of the Helmholtz resonator tube with a length much shorter than 1/4 wavelength. Furthermore, the Helmholtz resonator has shown remarkably increased volume flow rates at both ends. In experiments, a Helmholtz resonator amplifies the pressure ratio from 1.22 to 1.49 and produces pressure amplitude of 0.44 MPa with nitrogen of 2.2 MPa as working gas. Relatively good agreements are obtained between computational and experimental results. This research is instructive for comprehensively understanding the transmission characteristics of acoustic components.  相似文献   

15.
This paper proposes a new type of solar energy based power generation system using supercritical carbon dioxide and heat storage. The power generation cycle uses supercritical carbon dioxide as the working fluid and integrates the supercritical carbon dioxide cycle with an efficient high-temperature heat storage. The analysis shows that the new power generation system has significantly higher solar energy conversion efficiency in comparison to the conventional water-based (steam) system. At the same time, the heat storage not only overcomes the intermittent nature of solar energy but also improves the overall system efficiency. The study further reveals that the high temperatures and high pressures are favorable for solar energy storage and power generation. Moreover the expander and the heat storage/regenerator are found to be the key components that determine the overall system performance.  相似文献   

16.
Traveling-wave thermoacoustic electricity generator is a new external-combustion type device capable of converting heat such as solar energy into electric power. In this paper, a 1 kW solar-powered traveling-wave thermoacoustic electricity generation system is designed and fabricated. The system consists of a traveling-wave thermoacoustic electricity generator, a solar dish collector and a heat receiver. In the preliminary tests, using electric cartridge heaters to simulate the solar energy, a maximum electric power of 481 W and a maximum thermal-to-electric efficiency of 15.0% were achieved with 3.5 MPa pressurized helium and 74 Hz working frequency. Then, after integrating the traveling-wave thermoacoustic electricity generator with the solar dish collector and the heat receiver, the solar-powered experiments were performed. In the experiments, a maximum electric power of about 200 W was obtained. However, due to the solar dish collector problems, the heating temperature of the receiver was much lower than expected. Optimizations of the collector and the heat receiver are under way.  相似文献   

17.
A standing-wave thermoacoustic engine, employing an acoustic pressure amplifier (APA), is simulated with linear thermoacoustics to study the influence of APA’s dimensions on performance of the thermoacoustic system. Variations of operating parameters, including pressure ratio, acoustic power, hot end temperature of stack etc., versus length and diameter of APA are presented and discussed based on an analysis of pressure and velocity distribution in APA. Simulation results indicate that a largest amplification effect of both pressure ratio and acoustic power output is achieved at a critical length for the occurrence of pressure node and velocity antinode in APA, close to but less than one fourth of the wavelength. The distribution characteristics of pressure and velocity in APA are similar to a standing-wave acoustic field, which is the reason for the amplification effect. From the viewpoint of energy, the amplification effect results from the changed distribution of acoustic energy and acoustic power loss in the thermoacoustic system by APA. Experiments have been carried out to validate the simulation, and experimental data are presented.  相似文献   

18.
A simplified computational method for studying the heat transfer characteristics of parallel plate thermoacoustic heat exchangers is presented. The model integrates the thermoacoustic equations of the standard linear theory into an energy balance-based numerical calculus scheme. Details of the time-averaged temperature and heat flux density distributions within a representative domain of the heat exchangers and adjoining stack are given. The effect of operation conditions and geometrical parameters on the heat exchanger performance is investigated and main conclusions relevant for HX design are drawn as far as fin length, fin spacing, blockage ratio, gas and secondary fluid-side heat transfer coefficients are concerned. Most relevant is that the fin length and spacing affect in conjunction the heat exchanger behavior and have to be simultaneously optimized to minimize thermal losses localized at the HX-stack junctions. Model predictions fit experimental data found in literature within 36% and 49% respectively at moderate and high acoustic Reynolds numbers.  相似文献   

19.
Rapid development of portable electronics promotes the R&D of micro/miniature power sources with high energy density. The high mass energy density and zero emission characteristic of hydrogen show a huge potential to develop powerful portable hydrogen-based power sources. A miniature hydrogen catalytic combustion powered thermoelectric generator (CCP-TEG) is designed and tested in detail. An outstanding catalytic core is prepared with a newly proposed method on the basis of combining H2PtCl6 solution and foamed transition metal. Such catalytic core is demonstrated to provide high combustion temperature, complete combustion, and sufficient heat flux for power generation. Several parameters including input power, equivalent ratio, cooling mode, and load resistance are investigated to clarify their influences on the combustion temperature, electric power, and various efficiencies (combustion, heat collection, TE, and overall efficiencies) of the hydrogen CCP-TEG. The developed hydrogen CCP-TEG is able to generate an electric power of 20.7 W with an overall efficiency of 2.04%, filling the research gap of generating large electric power (>10 W) with sufficiently high overall efficiency (>2%) in the research field of hydrogen CCP-TEG. The generated electric power and overall efficiency are much higher than those in previous hydrogen CCP-TEGs. The prepared catalytic core remains excellent functionality after running for 30 h, and the combustion temperature is as high as 918 K, which ensures the sufficiently high temperature difference for powerful power generation. This study is conducted to illustrate a concrete method on developing a powerful hydrogen CCP-TEG, and to identify further research directions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号