首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Low-grade energy is widespread. However, it cannot be utilized with high thermal efficiency directly. Following the principle of thermal energy cascade utilization, a thermoacoustic engine (TE) with a new regenerator that can be driven by multiple heat sources at different temperature levels is proposed. Taking a regenerator that utilizes heat sources at two temperatures as an example, theoretical research has been conducted on a traveling-wave TE with the new regenerator to predict its performance. Experimental verification is also done to demonstrate the benefits of the new regenerator. Results indicate that a TE with the new regenerator utilizing additional heat at a lower temperature experiences an increase in pressure ratio, acoustic power, efficiency, and exergy efficiency with proper heat input at an appropriate temperature at the mid-heater. A regenerator that uses multi-temperature heat sources can provide a means of recovering lower grade heat.  相似文献   

2.
When a reversible process, such as the compression of a working gas, is treated as a feedback mechanism coupling adjacent heat engine cycles, analysis reveals a parasitic energy loss unaccounted for by traditional theory. Including this feedback‐induced energy loss in the derivation of an efficiency relation yields predictions that reproduce experimental observations with sufficient accuracy as to propose this effect as being the primary source of disparity between practice and existing theory. Further, it is shown that both the Carnot and Curzon–Ahlborn efficiency relations are derivable special cases of this more general result. Finally, it is postulated that substantial gains in thermodynamic efficiency may be affected in practical heat engines, including increases on the order of 30% in internal combustion engines, by frustrating these feedback mechanisms through simple mechanical modifications. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
The classical linear thermoacoustic theory is integrated through a numerical calculus with a simple energy conservation model to allow estimates of the optimal length of thermoacoustic heat exchangers and of the magnitude of the related heat transfer coefficients between gas and solid walls. This information results from the analysis of the temperature and heat flux density distributions inside a thermally isolated thermoacoustic stack. The effects of acoustic amplitude, plate spacing, plate thickness and Reynolds number on the heat transfer characteristics are examined. The results indicate that a net heat exchange between the acoustically oscillating gas and the solid boundary takes place only within a limited distance from the stack edges. This distance is found to be an increasing function of the plate spacing in the range (0  y0/δκ  2), becoming constant for y0/δκ  2. The calculated dimensionless convective heat transfer coefficients, the Nusselt numbers, between gas and solid wall are comparable to those evaluated from classical correlations for steady laminar flow revised under the “Time-Average Steady-Flow Equivalent” (TASFE) and “root-mean-square Reynolds number” (RMSRe) models. Numerical results agree with measurements of the heat transfer coefficient found in literature to within 20%.  相似文献   

4.
《Applied Thermal Engineering》2003,23(16):2061-2078
The concept of thermal engine insulation has been the subject of many experiments aiming at reducing heat transfer to the water cooling jackets and most of the resulting attempts lead to poor and controversial results. The increase of efficiency expected from the thermal insulation was generally not found and the experiments show that most of the heat not transferred to the walls can be found in the exhaust gas. The aim of this work-in-progress communication is to bring a contribution to the understanding of these energy transfer phenomena between the exhaust and cooling systems of a reciprocating engine with energy recovery. It is shown with a local unsteady approach that a competition occurs between the thermodynamic expansion velocity and the heat propagation velocity during the expansion stroke. There exists a characteristic time, above which the internal wall behaves temporarily like a heat store that delivers heat back to the exhaust gas at the end of the expansion stroke. Although, it appears unrealistic to apply heat insulation to a thermal engine with the objective of increasing mechanical power and efficiency, it is however justified applying a partial thermal insulation to turbocharging and energy recovery applications.  相似文献   

5.
6.
《热应力杂志》2012,35(1):55-71
Abstract

Modeling and understanding heat transport and temperature variations within biological tissues and body organs are key issues in medical thermal therapeutic applications, such as hyperthermia cancer treatment. In the present analysis, the bioheat equation is studied in the context of memory responses. The heat transport equation for this problem involving the memory-dependent derivative (MDD) on a slipping interval in the context of three-phase (3P) lag model under two-temperature theory is formulated and is then used to study the thermal damage within the skin tissue during the thermal therapy. Laplace transform technique is implemented to solve the governing equations. The influences of the MDD and moving heat source velocity on the temperature of skin tissues are precisely investigated. The numerical inversion of the Laplace transform is carried out using Zakian method. The numerical outcomes of temperatures are represented graphically. Excellent predictive capability is demonstrated for identification of an appropriate procedure to select different kernel functions to reach effective heating in hyperthermia treatment. Significant effect of thermal therapy is reported due to the effect of delay time and the velocity of moving heat source as well.  相似文献   

7.
With the increasingly extensive utilization of liquefied natural gas (LNG) in China today, sustainable and effective using of LNG cold energy is becoming increasingly important. In this paper, the utilization of LNG cold energy in seawater desalination system is proposed and analyzed. In this system, the cold energy of the LNG is first transferred to a kind of refrigerant, i.e., butane, which is immiscible with water. The cold refrigerant is then directly injected into the seawater. As a result, the refrigerant droplet is continuously heated and vaporized, and in consequence some of the seawater is simultaneously frozen. The formed ice crystal contains much less salt than that in the original seawater. A simplified model of the direct-contact heat transfer in this desalination system is proposed and theoretical analyses are conducted, taking into account both energy balance and population balance. The number density distribution of two-phase bubbles, the heat transfer between the two immiscible fluids, and the temperature variation are then deduced. The influences of initial size of dispersed phase droplets, the initial temperature of continuous phase, and the volumetric heat transfer coefficient are also clarified. The calculated results are in reasonable agreement with the available experimental data of the R114/water system.  相似文献   

8.
Research on clean and efficient energy conversion is extremely important to mitigate the high price of fossil fuel and its adverse effects on the environment. Thermoacoustic is a clean energy conversion technology that uses the conversion of acoustic to thermal energy and vice versa. However, the efficient conversion of acoustic to thermal energy using thermoacoustic systems (e.g., engine, refrigerator, or heat pump) demands research on working fluids, operational, and geometric parameters. The present study is a contribution to improve the efficiency of a thermoacoustic heat system by introducing a magnetic field perpendicular to the direction of the oscillating fluid. The major focus of this study is to examine the effect of a magnetic field on three important performance parameters: energy, heat, and work fluxes of a multi-plate thermoacoustic system. Initially, analytical expressions for the fluctuating velocity and temperature are derived from the governing continuity, momentum, and energy equations by applying the first order perturbation technique and solving these equations. The derived first order analytical equations for the fluctuating velocity and temperature enable us to calculate the energy, heat, and work fluxes and are expressed in terms of dimensionless Hartmann number (Haδ), temperature gradient ratio (Γ0), Swift number (Sw), Prandlt number (Pr), and modified Rott's and Swift's parameters (fv and fk). It is observed that the normalized energy flux density increases with increasing Haδ and Γ0 when Sw < 1.5. The heat flux and work flux densities also increase with increasing Haδ and Γ0 when Sw < 1.5 and decrease when Haδ > 1.5. The findings of this research will provide useful information to thermoacoustic system's designers for the devloepment of effieicnt magnetic thermoacoustic heat pumps.  相似文献   

9.
10.
《Applied Thermal Engineering》2007,27(14-15):2435-2442
Oscillatory flow heat transfer at the heat exchanger of the thermoacoustic refrigeration system was studied. The study identified significant factors that influence this heat transfer as well as the construction of the system. The results from the experimental study were correlated in terms of Nusselt number, Prandtl number and Reynolds number to obtain a useful new correlation for the heat transfer at the heat exchangers. Results show that using straight flow heat transfer correlations for analyses and design of this system could result in significant errors. Results also show the relationship between the oscillatory heat transfer coefficient at the heat exchangers, the mean pressure and frequency of oscillation. Higher mean pressures result in greater heat transfer coefficients if the thermoacoustic refrigerating system operates at the corresponding resonant frequency. However, a compromise has to be reached to accommodate construction of the stack.  相似文献   

11.
建立了一个包含多种不可逆性的不可逆热机模型,并将热漏分为外热漏和内热漏两种方式。在此基础上求得存在热阻、热漏和内不可逆损失的定常态流不可逆卡诺热机的功率、效率关系。分析了两种热漏方式对热机最优性能的影响,发现内热漏对热机功率效率特性的影响不同于外热漏,而且与摩擦、涡流和非平衡等不可逆效应也不同;内热漏不能归结于外热漏作为整个热机的热漏或合并为除热阻和热漏外的其他不可逆性。分析表明,当有内热漏存在时,一定温比下热机的最佳功率和最佳效率工作状态分别对应不同的面积比。所得结果对热机设计具有一定指导意义。  相似文献   

12.
Kerwin Khu  Liudi Jiang  Tom Markvart 《Energy》2011,36(5):2686-2692
Micro heat engines have attracted considerable interest in recent years for their potential exploitation as micro power sources in microsystems and portable devices. Thermodynamic modeling can predict the theoretical performance that can be potentially achieved by micro heat engine designs. An appropriate model can not only provide key information at the design stage but also indicate the potential room for improvement in existing micro heat engines. However, there are few models reported to date which are suitable for evaluating the power performance of micro heat engines. This paper presents a new thermodynamic model for determining the theoretical limit of power performance of micro heat engines with consideration to finite heat input and heat leakage. By matching the model components to those of a representative heat engine layout, the theoretical power, power density, and thermal efficiency achievable for a micro heat engine can be obtained for a given set of design parameters. The effects of key design parameters such as length and thermal conductivity of the engine material on these theoretical outputs are also investigated. Possible trade-offs among these performance objectives are discussed. Performance results derived from the developed model are compared with those of a working micro heat engine (P3) as an example.  相似文献   

13.
This work proposes a simple calculus procedure based on the linear thermoacoustic theory. The methodology applies on rate of change (time derivative) rather than on steady state temperature distributions so it constitutes a complementary to conventional analysis to perform test on the reliability and applicability of the linear theory. The procedure has been applied to experimental data collected by means of a simple prototype of thermoacoustic device. The apparatus, whose technical characteristics are described in detail along with the data acquisition procedure, has been able to highlight the general features of the thermoacoustic effect. Measurements concern the acoustically generated temperature gradients across a ThermoAcoustic Couple, a structure firstly introduced by Wheatley and coworkers in 1983. The obtained results indicate that heat transfer phenomena are more critical than non linear acoustic behavior in determining the overestimation that theoretical predictions make on experimental values.  相似文献   

14.
In recent years, renewable energy sources have played an increasingly important role in potential energy production. The integration of renewables into energy production plants has therefore become a major challenge for many organizations. This study concerns the modernization of a small power plant in a large hospital. The design criteria include the possibility of utilizing renewable energy sources and providing a potential increase in heat production (with additional heat being supplied to a nearby university campus). The existing boiler conditions (i.e. controls, efficiency, etc.) are unable to satisfy the desired requirements and therefore require an extensive retrofit.  相似文献   

15.
简述了多污染热源置换通风的原理、特性及其与混合通风的比较 ,列举了工程应用实例 ,并对其节能效果进行了分析讨论 ,指出多污染热源置换通风是一种值得推广的通风方式  相似文献   

16.
Yasin Ust   《Renewable Energy》2007,32(12):2085-2095
A thermo-economic performance analysis and optimization has been carried out for an irrversible solar-driven heat engine with losses due to heat transfer across finite temperature differences, heat leak and internal irreversibilities. In the considered heat engine model, heat transfer from the hot reservoir is assumed to be simultaneous radiation and convection mode and the heat transfer to the cold reservoir is assumed to be convection mode. The effects of the technical and economical parameters on the thermo-economic performance have been investigated in order to see the collective effects of the radiation and convection modes of heat transfer. Also the optimal performance parameters of the heat engine, such as the thermal efficiency, temperatures of the working fluid and the ratio of heat transfer areas have been discussed in detail.  相似文献   

17.
Nowadays renewable sources are being used as clean sources to generate electricity and to reduce the dependency on fossil fuels. The uses of renewable sources are being increased in electricity generation and contributed to reduce the greenhouse gas emission. The function of any electrical power system is to connect everyone sufficiently, clean electric power anywhere and anytime of the country. This can be achieved through a modern power system by integrating electrical energy from clean renewable sources into the nation's electric grid to enhance reliability, efficiency and security of the power system. The paper on the status of review the driving force of the generation of renewable energy and proposing electrical energy generation from renewable sources to be ensured at least 20% of total energy of Australia. This paper has been studied the existing electricity generation capacity of Australia from renewable and non-renewable sources. Optimal electricity generation from renewable sources has been examined. The environmental impact of electricity generation from renewable sources has been considered. Under this paper the yearly average wind data of past 20 years and above for some meteorological stations of Australia have been used. The prospective electricity generation from wind turbines and solar photovoltaic panels has been proposed in the paper that will increase electrical energy of the power grid of Australia. It was estimated the capital cost of prospective electricity generation farms from wind and solar PV sources.  相似文献   

18.
This work is devoted to both experimental and numerical investigations of the hydrodynamics and associated heat transfer in two-dimensional microchannels from 700 μm to 200 μm in height. The design of the test section enabled to vary the channel height and to set a quasi-constant heat flux at the microchannel surface. Laminar developing, transitional and turbulent regimes of water flows were explored (200 < Re < 8000). A significant decrease in the Nusselt number was observed in the laminar regime when the channel spacing was decreased while the Poiseuille number remained unchanged in regard to conventional channel flow. It is shown that a bias effect in the solid/fluid interface temperature measurements is most likely responsible for this scale effect. The temperature error was estimated and accounted for in the determination of the Nusselt number. The corrected values have been found to be consistent with the conventional laws both in the laminar and in the beginning of the turbulent regime.  相似文献   

19.
20.
Ian Edmonds 《Solar Energy》2011,85(5):818-828
This article outlines the concept, theory and performance of an engine for converting the heat in warm, saturated air to electrical energy. The engine comprises a drive balloon and a support balloon both connected to an electric generator by a rope. Warm, saturated air from a source such as a solar pond or the cooling tower of a power station is used to charge the larger drive balloon. The two balloons ascend several kilometers while performing work on the electric generator. At some maximum height the larger drive balloon discharges all its air into the cold upper atmosphere and, with the smaller balloon providing support for the larger balloon envelope, the two balloons are hauled back to ground by switching the electric generator to electric motor operation. The work done by the system on the electric generator during ascent exceeds the work done on the system by the electric motor during descent resulting in a positive work output. Condensation of water vapor in the drive balloon maintains the internal saturated air temperature above ambient temperature and provides an increasing lift force with height. Recycling the condensate adds to the work output of the engine and conserves water. The ideal thermal efficiency of the engine approaches 15%, corresponding to the large temperature difference available within the 10 km height of the troposphere. The engine power scales as the cube of the drive balloon diameter. Scaling by a factor of four up from the diameter of commercially available balloons provides power outputs in the MW range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号