首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
徐超  闫胜业 《计算机应用》2017,37(6):1708-1715
为了在行人检测任务中使卷积神经网络(CNN)选择出更优模型并获得定位更准确的检测框,提出一种改进的基于卷积神经网络的行人检测方法。改进主要涉及两个方面:如何决定CNN样本迭代学习次数和如何进行重合窗口的合并。首先,关于CNN样本迭代次序问题,在顺序迭代训练多个CNN分类模型的基础上,提出一种基于校验集正确率及其在迭代系列分类器中展现出的稳定性进行更优模型选择的策略,以使最终选择的分类器推广能力更优。其次,提出了一种不同于非极大值抑制(NMS)的多个精确定位回归框合并机制。精确定位回归框的获取以CNN检测过程输出的粗定位框作为输入。然后,对每个粗定位框应用CNN精确定位过程并获得对应的精确定位回归框。最后,对多个精确定位回归框进行合并,合并过程考虑了每个精确定位回归框的正确概率。更精确地说,最终的合并窗口是基于多个相关的精确定位回归框的概率加权求和方式获得。针对提出的两个改进,在国际上广泛使用的行人检测公共测试数据集ETH上进行了一系列实验。实验结果表明,所提的两个改进方法均能有效地提高系统的检测性能,在相同的测试条件下,融合两个改进的方法相比Fast R-CNN算法检测性能提升了5.06个百分点。  相似文献   

2.
基于深度卷积神经网络的行人检测   总被引:1,自引:0,他引:1  
行人检测一直是目标检测研究与应用中的热点。目前行人检测主要通过设计有效的特征提取方法建立对行人特征的描述,然后利用分类器实现二分类。卷积神经网络作为深度学习的重要组成,在图像、语音等领域得到了成功应用。针对人工设计的特征提取方法难以有效表达复杂环境下行人特征的问题,提出采用多层网络构建深度卷积神经网络实现对行人检测的方法。系统分析了卷积神经网络层数、卷积核大小、特征维数等对识别效果的影响,优化了网络参数。实验结果表明该方法对于行人检测具有很高的识别率,优于传统方法。  相似文献   

3.
近年来,卷积神经网络在行人检测领域取得了同其他方法相似甚至更好的检测成绩,然而缓慢的检测速度远不能满足现实需求.针对这一问题,本文提出一种实时的行人检测方法,将分散的检测过程整合成单一的深度网络模型,被检测图片通过模型的计算可以直接输出检测结果.使用扩充的ETH数据集进行训练测试,实验结果表明,在保证准确率的情况下,该方法检测速度极快,可以满足实时检测的目的.  相似文献   

4.
提出基于YOLOV3和DenseNet相结合的轻量化行人检测算法。加入HSV图像处理模块强化行人特征,利用卷积神经网络提取行人特征,通过k均值聚类算法筛选预测框,借鉴特征金字塔的思想做高低层特征融合和预测,利用Dense Block结构对网络轻量化进行完善,在国际广泛使用的行人数据集上进行一系列实验。实验结果表明,检测速度比现有的优秀目标检测模型YOLOV3提升了8倍,模型大小为YOLOV3的1/107,所提方法在测试集上的实时性和准确率都有所提高。  相似文献   

5.
针对目前行人检测算法计算量过大和对小尺度行人检测精度不高的问题,提出了一种基于深度卷积神经网络特征层融合的小尺度行人检测方法,设计了一种包含9个卷积层的深度神经网络架构.在进行行人检测时,首先,对输入图像进行分块预处理操作,避免损失原始图像的视觉信息;然后,将网络不同层的卷积特征进行融合,提升行人特征的区分能力和表达能力,进而提升行人检测的精度,在保证检测精度的同时有效降低网络的复杂度.在INRIA、Caltech等公共行人数据集上的实验结果表明,所提出的行人检测方法能够有效检测小尺度的行人,且网络架构的参数量更少,检测速度更快,能得到更高精度的行人检测结果.  相似文献   

6.
深度学习作为机器学习的一个分支,在各个领域的应用越来越广,已经成为语音识别、自然语言处理、信息检索等方面的一个主要发展方向;其在图像分类、目标检测等方面更是不断取得新的突破。文中首先梳理了卷积神经网络在目标检测中的典型应用;其次,对几种典型卷积神经网络的结构进行了对比,并总结了各自的优缺点;最后,讨论了深度学习现阶段存在的问题以及未来的发展方向。  相似文献   

7.
针对传统卷积神经网络在感兴趣目标较小的情况下对动态障碍物检测会出现结果不准确的问题,提出一种基于改进卷积神经网络的运动障碍物检测方法。该方法在层层抽取细节特征的基础上融入全局特征,利用全局特征修正细节特征的提取,利用Softmax层进行分类来获取图像的整体信息。实验结果表明,与传统卷积神经网络相比,改进卷积神经网络具有较低的时间复杂度,以及较高的识别率。  相似文献   

8.
网络已经深入人们生产生活的各领域。然而,由于存在大量的非法入侵行为,网络所面临的安全问题也越来越严峻。因此,检测入侵以保障网络安全是一个亟待解决的问题。针对此,本文提出一种基于异卷积神经网络的入侵检测方法,采用深度学习的卷积神经网络模型完成对入侵数据的特征提取,然后根据2种不同结构的卷积神经网络训练数据,从而得到最优模型,用以判断网络入侵。最后,使用KDD 99数据进行对比实验,验证本文方法的准确性和精确性。  相似文献   

9.
基于卷积神经网络的目标检测研究综述   总被引:1,自引:0,他引:1  
随着训练数据的增加以及机器性能的提高,基于卷积神经网络的目标检测冲破了传统目标检测的瓶颈,成为当前目标检测的主流算法。因此,研究如何有效地利用卷积神经网络进行目标检测具有重要的价值。首先回顾了卷积神经网络如何解决传统目标检测中存在的问题;其次介绍了卷积神经网络的基本结构,叙述了当前卷积神经网络的研究进展以及常用的卷积神经网络;然后重点分析和讨论了两种应用卷积神经网络进行目标检测的思路和方法,指出了目前存在的不足;最后总结了基于卷积神经网络的目标检测,以及未来的发展方向。  相似文献   

10.
目标检测是计算机视觉领域中的一个研究热点。近年来,深度学习中的卷积神经网络在目标检测任务上表现突出。文中综述了深度学习在目标检测技术中的研究进展。首先,介绍了目标检测的两种方法和常用数据集,并分析了基于深度学习的方法在目标检测任务上所具有的优势。其次,根据深度学习的目标检测方法的发展过程,介绍了该方法所使用的经典卷积神经网络模型,并分析了各网络模型的特点。然后,从获取特征的能力、检测的速度及所使用的关键技术等方面进行了分析和总结。最后,根据基于深度学习的目标检测方法中存在的困难和挑战,对未来的发展趋势做了思考和展望。  相似文献   

11.
针对行人在部分自然场景图像中所占比例较小(以下简称小目标),提取的特征容易丢失,检测准确率低的问题,提出基于候选区域和并行卷积神经网络(Parallel Convolutional Neural Network,PCNN)的行人检测方法。对于候选区域提取部分,改进了选择性搜索,使其更符合行人这一类别的候选区域提取;利用Edge Boxes对选择性搜索提取的大量预候选区域进行过滤,最终得到数量少、质量高的候选区域。在利用卷积神经网络(Convolutional Neural Network,CNN)进行特征提取时,针对深层卷积神经网络能够提取到更丰富更抽象的高层特征,但同时对于小目标容易造成特征丢失的问题,加入浅层网络组成并行卷积神经网络(Parallel Convolutional Neural Network,PCNN)提取深、浅层特征输出。最后将所提方法应用于行人检测,实验结果表明,所提方法对于小目标的检测准确率有较好的提升。  相似文献   

12.
针对由于光照、分辨率、姿态和表情等因素变化引起的人脸检测准确性不高的问题和大多人脸检测算法使用单一的卷积神经网络去提取特征引起的算法的泛化能力变弱的问题,提出了三层由浅及深的级联的卷积神经网络结构。通过全卷积神经网络快速定位人脸候选区域,采用深度神经网络提取人脸鲁棒性特征,对候选区域进一步分类验证,并用联合回归的方法确定最终人脸位置,提高检测精度。同时通过加权降低得分改进常用的非极大值抑制的方法,解决了由于相邻人脸高度重叠引起的漏检问题。实验结果表明,该模型对上述引起人脸检测准确率不高的因素具有较好的鲁棒性,并且在FDDB数据集上有着较高的准确率和运行速度。改进后的非极大值抑制算法对在FDDB的测试准确率也有一定的提升。  相似文献   

13.
《软件》2019,(2):78-82
为了实现消化道图像中出血病灶的自动识别,本文提出了一种基于卷积神经网络的图像识别系统。该识别系统使用python以及TensorFlow进行卷积神经网络的搭建,并通过对比不同网络结构的识别准确度,选择合适的网络参数和训练参数,最后利用网络的识别结果,通过区域回归方法标记图像中的病灶区域。最终的实验结果表明:该图像识别系统的对于消化道出血图像的识别准确度可达92.30%,并能够在图像中标记出血区域。  相似文献   

14.
为了解决对于尺度变换较大车辆及遮挡车辆检测性能不足的问题,提出了一种实时车辆检测模型.针对车辆检测算法对于尺度敏感的问题,通过使用深度残差网络作为特征提取层,构建特征金字塔网络用于多尺度检测;利用软化非极大抑制线性衰减置信得分解决车辆遮挡问题,从而降低车辆的漏检率;同时对模型进行通道级裁剪缩减模型参数规模,节省计算资源...  相似文献   

15.
针对自动驾驶场景下,提高交通标志检测速度和准确率的问题,提出一种基于卷积神经网络(Convolutional Neural Network,CNN)的交通标志检测算法,与传统的图像检测算法相比拥有明显的优势。首先解析影响交通标志检测准确性的因素,并对算法提出了两项改进:使用101层的残差网络作为特征提取的基础网络以获得高精度的特征提取和物体检测,同时优化网络的区域候选框特征提取方式以提高交通标志图像的检测效果。在GTSDB德国交通标志检测基准数据集上的实验结果表明,该算法实现在复杂背景下交通标志的精准检测。  相似文献   

16.

Recently, deep learning methods have been applied in many real scenarios with the development of convolutional neural networks (CNNs). In this paper, we introduce a camera-based basketball scoring detection (BSD) method with CNN based object detection and frame difference-based motion detection. In the proposed BSD method, the videos of the basketball court are taken as inputs. Afterwards, the real-time object detection, i.e., you only look once (YOLO) model, is implemented to locate the position of the basketball hoop. Then, the motion detection based on frame difference is utilized to detect whether there is any object motion in the area of the hoop to determine the basketball scoring condition. The proposed BSD method runs in real-time with satisfactory basketball scoring detection accuracy. Our experiments on the collected real scenario basketball court videos show the accuracy of the proposed BSD method. Furthermore, several intelligent basketball analysis systems based on the proposed method have been installed at multiple basketball courts in Beijing, and they provide good performance.

  相似文献   

17.
雷达目标检测近年来一直是雷达信号处理中的重要任务,在探测监控等安全领域中有非常重要的作用;针对传统恒虚警目标检测方法存在的环境适应能力较弱、复杂地形环境下雷达虚警数量急剧上升等问题,提出一种基于卷积神经网络的雷达目标检测方法;以雷达回波信号数据处理后得到的距离-多普勒图像作为模型的训练集和测试集,设计基于FasterR-CNN结构的雷达目标检测模型,训练模型并将测试结果与传统恒虚警目标检测算法结果相比较,所设计的模型提升了雷达目标检测正确率并较大地减少了虚警数量,这表明将卷积神经网络应用于雷达回波信号的处理任务中是可行的。  相似文献   

18.
《软件》2019,(4):222-225
几年前,机器学习在司法方面的应用被提出并得到迅速发展。本文通过对判决文书的学习,将训练出的模型以文本分类的方式,用于协助办案人员进行罪名预测:1、在权威网站爬取大量判决文书,进行信息预处理后,提炼出较为精炼的文本数据和罪名标签;2、对文本进行分词、结构化处理、构成词汇表并与相应的词向量进行1对1映射;3、应用谷歌的Tensorflow搭建卷积神经网络,设置参数,训练模型并测试;4、反复调整参数后,改进优化算法,使分类效果理想。最终分类准确率在95%以上。  相似文献   

19.
针对现有车辆识别方法计算量大,提取特征复杂等问题,提出一种基于卷积神经网络(convolutional neural network,CNN)的车辆识别方法。构建卷积神经网络模型,分别使用不同的卷积核、网络层数、特征图数对网络进行训练;通过100次迭代的学习结果得到最优模型,提取隐含层所有特征,并结合支持向量机进行识别;系统分析了不同参数对测试正确率和样本均方误差的影响。实验结果显示,CNN+SVM在车辆识别中的准确率明显优于传统CNN、PCA+SVM、HOG+SVM、Wavelet+SVM,正确率为97.00%,分析了样本识别错误的原因以及今后需要改进的地方,为以后的研究指明了方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号