首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以磁性碳纳米管(Fe_3O_4/MWCNTs-COOH)为基质,壳聚糖(CS)、甲基丙烯酸甲酯(MMA)为功能单体,戊二醛为交联剂,Pb~(2+)为模板,采用反相悬浮聚合法制得一种新型铅离子印迹材料(IIPs)。利用FT-IR、XRD、TG、SEM对其进行结构表征,通过UV-Vis和AAS研究了IIPs的吸附特性。结果表明,IIPs对Pb~(2+)平衡吸附量为33.60 mg/g,该吸附过程符合准二级动力学模型,在竞争离子Cu~(2+)和Cd~(2+)存在时,Pb~(2+)/Cu~(2+)和Pb~(2+)/Cd~(2+)的选择系数分别为7.62和6.04。  相似文献   

2.
研究利用离子印迹技术,以壳聚糖为基材、环氧氯丙烷为交联剂制得Cu~(2+)印迹交联壳聚糖树脂微球,并用于水中Cu~(2+)的吸附。结果表明,正交实验确定优化的制备条件:壳聚糖质量分数4%、Cu~(2+)印迹量500 mg/L、交联剂1m L。单因素实验确定的吸附条件:p H为5.0、温度25℃时,此时吸附容量可达到95.0 mg/g,显示良好的Cu~(2+)吸附能力。对Cu~(2+)的吸附过程符合准2级吸附动力学模型和Langmuir吸附等温模型,以表面反应过程控制的化学吸附为主,为放热、自发过程;当Zn~(2+)、Cd~(2+)、Pb~(2+)分别与Cu~(2+)共存时,印迹微球对Cu~(2+)的选择吸附系数最大,达到28.7以上,离子选择性极高;经过5次循环实验后,对Cu~(2+)的吸附率仍达到96.8%,材料的重复利用性和稳定性好。  相似文献   

3.
利用分子印迹技术,以壳聚糖(CS)为功能单体,Cu~(2+)为印迹离子,通过稀氨水固化、环氧氯丙烷交联、盐酸洗脱Cu~(2+),制得了Cu~(2+)印迹交联壳聚糖微球(Cu~(2+)-ICM)。采用FTIR、XRD和FESEM对产品进行了表征,并测定了微球的骨架密度、含水量和交联度。结果表明:交联改性可使微球具有多孔结构和良好的结构稳定性,能够很好地降低CS的酸溶性,提高微球对Cu~(2+)的吸附性能。通过正交实验L_9(3~4)得到Cu~(2+)-ICM的最优制备条件为:CS 1.5 g,环氧氯丙烷2.5 mL,80℃下交联3.0 h,制得的微球对Cu~(2+)吸附量为67.80 mg/g。在单组分体系中考察了微球对Cu~(2+)的吸附性能。结果表明:当微球投加量为50 mg,Cu~(2+)初始质量浓度为338.7 mg/L,pH=5.0时,吸附量为72.80 mg/g。  相似文献   

4.
以氧化石墨烯(GO)、FeCl_3·6H_2O及聚(4-苯乙烯磺酸-共聚-马来酸)钠盐(PSSMA)为主要原料,通过简便一步溶剂热法制备了阴离子聚电解质修饰磁性氧化石墨烯(MGO@PSSMA),并将其用于水溶液中重金属Pb~(2+)、Cu~(2+)的吸附去除。采用FTIR、SEM、TEM、VSM和DLS对制备的MGO@PSSMA进行了表征。考察了溶液pH、吸附时间、溶液初始质量浓度对Pb~(2+)、Cu~(2+)在MGO@PSSMA及未经PSSMA修饰磁性氧化石墨烯(MGO)上吸附的影响。探讨了吸附等温过程、吸附动力学及吸附作用机理。结果表明:MGO表面引入PSSMA可有效增加其对Pb~(2+)、Cu~(2+)的吸附量。在pH=5,溶液初始质量浓度为300 mg/L时,MGO@PSSMA对Pb~(2+)和Cu~(2+)的实际吸附量达141.1和104.8 mg/g。当溶液初始质量浓度为150 mg/L时,MGO@PSSMA对Pb~(2+)和Cu~(2+)的吸附平衡时间分别为2和1.5 min。MGO@PSSMA对Pb~(2+)、Cu~(2+)的吸附动力学及吸附等温数据分别符合准二级吸附动力学模型和Langmuir吸附等温模型。使用乙二胺四乙酸(EDTA)和HCl可实现MGO@PSSMA的有效再生;通过外加磁场作用可实现MGO@PSSMA的回收再利用。  相似文献   

5.
为增强壳聚糖(CS)膜吸附重金属离子的能力,以CS为基体,利用乙二胺(EDA)对氧化石墨烯(GO)进行胺基化改性,将改性后的GO(n-GO)引入CS制备得到壳聚糖/胺基化氧化石墨烯(CS/n-GO)复合膜。探究吸附时间、吸附剂质量、溶液p H、初始质量浓度等条件下复合膜对铜离子(Cu~(2+))吸附性能的影响。结果表明,GO表面成功接枝上了氨基,最佳的胺基化摩尔比为n(GO)∶n(EDA)=1∶8。在吸附时间为12 h、溶液p H=4、吸附剂质量为70 mg、初始质量浓度为50 mg/L时,CS/nGO复合膜对Cu~(2+)吸附效果最好,吸附率最高可达92. 8%。CS/n-GO复合膜对Cu~(2+)的吸附动力学符合准二级动力学方程,吸附模型符合Langmuir等温吸附模型。经过5次吸-脱附实验后,复合膜仍可重复使用。  相似文献   

6.
实验选用壳聚糖为原料,研究壳聚糖对Cu~(2+)的吸附条件,探讨pH值,壳聚糖投加量,温度,吸附时间等因素对壳聚糖吸附性能的影响,并在不同吸附时间和不同温度下,从动力学和热力学两方面对其吸附性能进行探讨。结果表明,pH 4.0~5.0的条件下壳聚糖对Cu~(2+)的吸附能力最强;随着壳聚糖添加量的增加,其对Cu~(2+)的吸附能力逐渐增强,最佳用量均为4 000 mg/L;随着温度的增加,壳聚糖对Cu~(2+)的吸附能力逐渐增强,不同温度下的ΔG均小于零,且温度越高,ΔG越小,ΔH大于零。随着吸附时间延长,初始阶段吸附速率较快,此后趋于平衡,吸附动力学行为符合拟二级速率模型。  相似文献   

7.
以净水厂铝污泥(AlS)为主要原料,依次经过铁盐浸渍和壳聚糖(CS)包覆,制得复合吸附剂AlS-Fe-CS,研究其对Cu~(2+)的吸附。结果表明,化学改性后,铁(氢)氧化物和CS复合在铝污泥上;最优吸附pH为5.5,吸附平衡时间为20 h,对Cu~(2+)的最大吸附量为72.36 mg/g,相比纯AlS性能提高了约1倍,且温度升高有利于吸附反应的进行;吸附过程符合拟二级动力学和Freundlich吸附等温线。  相似文献   

8.
以煤气化灰渣为原料,采用酸改性法(HF酸)制备改性煤气化灰渣。通过静态实验研究了改性煤气化灰渣对溶液中Pb~(2+)、Cu~(2+)、Cd~(2+)的吸附特性,测定了溶液pH值、吸附时间、金属离子初始浓度对吸附的影响。结果表明,二级动力学方程很好的描述溶液中重金属离子在改性煤气化灰渣上的吸附过程;吸附等温线符合Langmuir模型,Pb~(2+)、Cu~(2+)、Cd~(2+)的静态饱和吸附量分别为112.07,40.18,31.21 mg/g。  相似文献   

9.
耦合溶胶-凝胶技术与水热法,制备具有核壳结构的海胆状Fe_3O_4@TiO_2磁性纳米介质(sea urchin magnetic nanoparticles,SUMNPs)。采用TEM、SEM等方法对SUMNPs的形貌等性质进行表征,证实该材料呈现出以Fe_3O_4为核,以TiO_2为壳的海胆状结构,壳层直径约400 nm,比表面积高达236.082 m2·g-1,表面孔径约6.274 nm。SUMNPs对重金属离子选择吸附的结果表明,基于Pb~(2+)离子半径大、电子层数多等物化特点,在Pb~(2+)、Cu~(2+)、Ni~(2+)、Zn~(2+)、Cd~(2+)5种金属离子混合体系中,SUMNPs可以高容量、高选择性快速吸附Pb~(2+),而对其他4种重金属离子几乎无吸附活性。单一Pb~(2+)吸附可在5 min内快速平衡,平衡吸附容量为283 mg·g-1。吸附过程符合Langmuir等温吸附模型,SUMNPs对Pb~(2+)的最大饱和吸附容量为458.72 mg·g-1。经EDTA二钠解吸,Na OH再生后的SUNMPs可以重复使用8次以上。SUMNPs对Pb~(2+)具备优异的选择性吸附性能,在处理水体铅污染、恢复水体生态领域具有良好的应用前景。  相似文献   

10.
采用单因素试验结合Box-Behnken响应面法,以吸附容量为指标,考察壳聚糖(CS)、聚乙二醇(PEG)、β-环糊精(β-CD)、乙烯基三乙氧基硅烷(JH-V151)等因素对制备的CS/PEG/β-CD复合膜处理含铜废水性能的影响。确定CS/PEG/β-CD复合膜的最佳制备条件:m(PEG)∶m(CS)=3∶7,m(β-CD)∶m(CS)=1∶5,JH-V151无水乙醇溶液体积分数为9%。在pH为6、实验温度为55℃、实验时间为3 h时,膜对Cu~(2+)的最大吸附量为49.20 mg/g,去除率达到98.40%,吸附过程可以较好地用伪二级动力学模型描述,数据可应用Langmuir等温模型拟合,膜对Cu~(2+)的理论饱和吸附量为140.06 mg/g。  相似文献   

11.
本研究采用城市生活污泥为原料,污泥活化后低温炭化所得的生物炭用作吸附剂去除水溶液中的Pb~(2+)、Cu~(2+)、Cd~(2+)、Cr~(6+)重金属离子。并对所得生物炭进行了表征,研究了溶液pH值、初始浓度、吸附时间对生物炭吸附能力的影响,并对吸附机理进行了分析。实验结果表明:所得生物炭对Pb~(2+)、Cu~(2+)、Cd~(2+)、Cr~(6+)的最大吸附值分别为250 mg/g、93.5 mg/g、44.4 mg/g、142 mg/g。生物炭对Pb~(2+)、Cu~(2+)、Cd~(2+)、Cr~(6+)的等温吸附曲线符合Langmuir方程,吸附动力学过程可以用伪二阶模型来描述。  相似文献   

12.
采用壳聚糖颗粒为固化介质,将单宁和壳聚糖以共价方式结合,制备了壳聚糖固化单宁颗粒吸附剂。采用红外光谱对所得吸附剂进行表征,并研究了各种操作条件,如溶液的pH值、溶液Cu~(2+)离子浓度、吸附时间等对吸附性能的影响。结果表明,升高溶液的pH值(实验中pH不大于7)和Cu~(2+)离子浓度会提高吸附剂的吸附量;吸附剂对Cu~(2+)离子有较快的吸附速度,60 min可达到吸附平衡;溶液中共存的Na~+离子会降低吸附剂对Cu~(2+)离子的吸附能力;对Cu~(2+)离子的吸附规律符合Langmuir吸附等温模型,最大吸附量达到75.23 mg·g~(-1)。  相似文献   

13.
以丙烯酸(AA)和壳聚糖(CS)为原料,N,N'-亚甲基双丙烯酰胺(MBA)为交联剂,利用辉光放电电解等离子体(GDEP)技术在水溶液中一步引发制备了壳聚糖/聚丙烯酸(CS/PAA)水凝胶。采用FTIR、XRD和SEM对水凝胶的结构和形貌进行了表征,考察了溶液p H、吸附时间和初始质量浓度对Cu~(2+)和Cd~(2+)吸附的影响,探讨了水凝胶的重复利用性。结果表明:AA成功接枝到了CS链上,形成了具有多孔三维网络结构的CS/PAA水凝胶;该水凝胶对Cu~(2+)和Cd~(2+)的吸附符合准二级动力学模型和Langmuir吸附等温式;在最佳吸附p H下(p H=4.3),吸附120 min,CS/PAA水凝胶对Cu~(2+)和Cd~(2+)的最大实际吸附量分别为151.2和298.8 mg/g;该水凝胶在0.015mol/L乙二胺四乙酸四钠(EDTA-4Na)溶液中吸附解吸4次后,吸附量变化不大,说明CS/PAA水凝胶具有优异的再生和重复利用性。  相似文献   

14.
采用反相悬浮聚合法制备了粒状交联聚丙烯酸钠(gc-PAANa)凝胶,对gc-PAANa凝胶样品进行了SEM、FT-IR和TGA表征及溶胀率测试。将gc-PAANa凝胶用于吸附水溶液中Pb~(2+)的研究,结果表明,在p H=3.0~5.0 gc-PAANa凝胶对Pb~(2+)的吸附具有非常好的效果。0.02~0.1 mol×L-1 Ca2+/Mg2+的存在对Pb~(2+)的吸附几乎无影响,Pb~(2+)初始浓度对吸附结果影响较大,gc-PAANa凝胶对初始浓度低于350 mg×L-1的Pb~(2+)废水,Pb~(2+)的去除率可达到95%以上。gc-PAANa凝胶对Pb~(2+)的吸附动力学符合准二级模型,吸附等温线符合Langmuir模型,293 K下的最大吸附量为446.98 mg×g-1;吸附热力学分析表明,gc-PAANa凝胶对Pb~(2+)的吸附属于自发的放热反应。XPS分析表明,gc-PAANa凝胶吸附Pb~(2+)的机理属于-COO-与Pb~(2+)的螯合作用。吸附-解吸附循环实验显示,gc-PAANa凝胶处理含Pb~(2+)废水具有很好的重复利用性能。  相似文献   

15.
以卡拉胶(CN)、海藻酸钠(SA)和壳聚糖(CS)为基质包裹磷酸钡合成了CN-SA-CS@Ba P复合微球球形吸附剂,对其形貌特征进行了表征,研究了对含铅废水的净化效果,结果表明,CN-SA-CS@Ba P复合微球在p H为4~6时去除效果最好;随着水溶液中Pb~(2+)初始含量的增加,复合微球对铅的吸附量也随之增加,但是去除效率却逐渐降低;随着接触时间增加,复合微球的吸附量逐渐增大并在180 min左右达到吸附平衡。复合微球对Pb~(2+)的吸附平衡最符合Langmuir等温线模型,最大吸附量可达132.1 mg/g;复合微球对Pb~(2+)具有快的吸附速率,其吸附动力学遵循准2级反应动力学模型,这与其三维网络结构和大量功能性基团有关。  相似文献   

16.
《应用化工》2022,(5):1212-1219
研究了对二氧化硅加入壳聚糖(CS)、硅烷,进行改性、冷冻干燥制备气凝胶复合吸附剂,探索对Fe(2+)的吸附特性。吸附等温线符合Langmiur吸附模型,其最大吸附量333.3 mg/g,吸附常数0.75 L/mg。吸附动力学符合二级动力学方程,吸附速率常数1.056 10 g/(mg·min),吸附容量125 mg/g。交联剂和冷冻干燥处理,提高了SiO_2/CS吸附剂的吸附性能。  相似文献   

17.
研究了对二氧化硅加入壳聚糖(CS)、硅烷,进行改性、冷冻干燥制备气凝胶复合吸附剂,探索对Fe~(2+)的吸附特性。吸附等温线符合Langmiur吸附模型,其最大吸附量333.3 mg/g,吸附常数0.75 L/mg。吸附动力学符合二级动力学方程,吸附速率常数1.056 10 g/(mg·min),吸附容量125 mg/g。交联剂和冷冻干燥处理,提高了SiO_2/CS吸附剂的吸附性能。  相似文献   

18.
采用Ca~(2+)印迹保护氨基、戊二醛交联、冻干法造孔、CS2化学改性,制得了Ca~(2+)印迹交联改性壳聚糖(CK)。并用FTIR、XRD和BET对吸附剂的结构进行了表征,通过静态吸附实验考察了其对Cd~(2+)的吸附性能及机理。结果表明:Ca~(2+)保护了氨基;戊二醛与壳聚糖(CS)发生了交联,改善了CS的酸溶性,pH=2时仍可使用;冻干法可使微孔比表面积增大至272.82 m2/g,孔体积增大至0.44 cm3/g;经CS2化学改性,成功引入了C=S基团,提高了CK对Cd~(2+)的吸附性能,平衡吸附量可达49.43 mg/g,比CS的吸附量提高了57.7%。CK对Cd~(2+)的吸附过程符合准二级动力学模型,反应速率常数可达25 g/(g·min);CK对Cd~(2+)的吸附过程符合Freundlich吸附等温式,n值可达4.45;Dubinin Radushkevich模型分析表明:CK吸附Cd~(2+)的平均吸附能为2 236 kJ/mol,是化学吸附;选择性识别实验结果表明:CK对Cd~(2+)具有选择吸附性,除Ca~(2+)外,相对选择性系数均大于3.54。  相似文献   

19.
为了提高氧化石墨烯(GO)的吸附能力和分离效果,采用恒温搅拌法和水热法制备磁性三乙烯四胺氧化石墨烯(M-T-GO)复合吸附剂。通过X射线衍射(XRD)、傅里叶红外光谱(FT-IR)和透射电镜(TEM)测试方法对其进行表征,并对M-T-GO对Cu~(2+)的p H、吸附动力学、吸附等温线和吸附热力学进行研究。结果表明,M-T-GO对Cu~(2+)的吸附符合二级反应动力学和Langmuir吸附等温式描述,吸附反应为自发吸热过程,饱和吸附量为245.09 mg·g-1,同时具有快速分离和易再生的优点。采用X射线光电子能谱(XPS)推测M-T-GO对Cu~(2+)的吸附机理,结果表明M-T-GO主要通过螯合作用和静电引力对Cu~(2+)进行吸附。  相似文献   

20.
将通过溶剂蒸发法制备的壳聚糖膜(CS)转移至氯化铁溶液中震荡吸附Fe~(3+)(CS-Fe),用于连续吸附废水中的Cr(Ⅵ)。利用SEM、FT-IR对其进行表征,并探讨了各因素对吸附效果的影响,结果表明吸附容量最大可达252.6 mg/g,是壳聚糖膜吸附量的2.1倍。吸附在60 min内达到平衡,吸附等温线既符合Langmuir模型,也符合Freundlich模型。吸附动力学符合拟二阶动力学模型。3次循环使用后,吸附量仍可达到113 mg/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号