首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The basic operation of a fractional-n frequency synthesizer has been published, but to date little has been presented on the digital ΔΣ modulators which are required to drive such synthesizers. This paper provides a tutorial overview, which relates digital ΔΣ modulation to other applications of ΔΣ modulation where the literature is more complete. The paper then presents a digital ΔΣ modulator architecture which is economical and efficient and which is practical to realize with commercially available components in comparison with other possible implementations which require extensive custom very large-scale integration (VLSI). A demonstration is made of a 28-b modulator using the architecture presented, which provides a 25-MHz tuning bandwidth and <1-Hz frequency resolution. The modulator is demonstrated in an 800-MHz frequency synthesizer having phase noise of -90 dBC/Hz at a 30-kHz offset  相似文献   

2.
A monolithic 1.8-GHz ΔΣ-controlled fractional-N phase-locked loop (PLL) frequency synthesizer is implemented in a standard 0.25-μm CMOS technology. The monolithic fourth-order type-II PLL integrates the digital synthesizer part together with a fully integrated LC VCO, a high-speed prescaler, and a 35-kHz dual-path loop filter on a die of only 2×2 mm2. To investigate the influence of the ΔΣ modulator on the synthesizer's spectral purity, a fast nonlinear analysis method is developed and experimentally verified. Nonlinear mixing in the phase-frequency detector (PFD) is identified as the main source of spectral pollution in ΔΣ fractional-N synthesizers. The design of the zero-dead zone PFD and the dual charge pump is optimized toward linearity and spurious suppression. The frequency synthesizer consumes 35 mA from a single 2-V power supply. The measured phase noise is as low as -120 dBc/Hz at 600 kHz and -139 dBc/Hz at 3 MHz. The measured fractional spur level is less than -100 dBc, even for fractional frequencies close to integer multiples of the reference frequency, thereby satisfying the DCS-1800 spectral purity constraints  相似文献   

3.
A 2.5-GHz/900-MHz dual fractional-N/integer-N frequency synthesizer is implemented in 0.35-μm 25-GHz BiCMOS. A ΔΣ fractional-N synthesizer is employed for RF channels to have agile switching, low in-band noise, and fine frequency resolution. Implementing two synthesizers with an on-chip ΔΣ modulator in a small package is challenging since the modulator induces substantial digital noise. In this work, several design aspects regarding noise coupling are considered. The fractional-N synthesizer offers less than 10-Hz frequency resolution having the in-band noise contribution of -88 dBc/Hz for 2.47-GHz output frequency and -98 dBc/Hz for 1.15-GHz output frequency, both measured at 20-kHz offset frequency. The prototype dual synthesizer consumes 18 mW with 2.6-V supply  相似文献   

4.
A 1.1-GHz fractional-N frequency synthesizer is implemented in 0.5-μm CMOS employing a 3-b third-order ΔΣ modulator. The in-band phase noise of -92 dBc/Hz at 10-kHz offset with a spur of less than -95 dBc is measured at 900.03 MHz with a phase detector frequency of 7.994 MHz and a loop bandwidth of 40 kHz. Having less than 1-Hz frequency resolution and agile switching speed, the proposed system meets the requirements of most RF applications including multislot GSM, AMPS, IS-95, and PDC  相似文献   

5.
A fractional-N phase-locked loop (PLL) serves as a Gaussian minimum-shift keying (GMSK) transmitter and a receive frequency synthesizer for GSM. The entire transmitter/synthesizer is fully integrated in 0.35-/spl mu/m CMOS and consumes 17.4 and 12 mW from 2.5 V in the transmit and receive modes, respectively, including an on-chip voltage-controlled oscillator. The circuit meets GSM specifications on modulation accuracy in transmit mode, and measured phase noise from the closed-loop PLL is -148 dBc/Hz and -162 dBc/Hz, respectively, at 3- and 20-MHz offset. Worst case spur at 13-MHz offset is -77 dBc.  相似文献   

6.
A digital compensation method and key circuits are presented that allow fractional-N synthesizers to be modulated at data rates greatly exceeding their bandwidth. Using this technique, a 1.8-GHz transmitter capable of digital frequency modulation at 2.5 Mb/s can be achieved with only two components: a frequency synthesizer and a digital transmit filter. A prototype transmitter was constructed to provide proof of concept of the method; its primary component is a custom fractional-N synthesizer fabricated in a 0.6-μm CMOS process that consumes 27 mW. Key circuits on the custom IC are an on-chip loop filter that requires no tuning or external components, a digital MASH Σ-Δ modulator that achieves low power operation through pipelining, and an asynchronous, 64-modulus divider (prescaler). Measurements from the prototype indicate that it meets performance requirements of the digital enhanced cordless telecommunications (DECT) standard  相似文献   

7.
ΣΔ modulation with integrated quadrature mixing is used for analog-to-digital (A/D) conversion-of a 10.7-MHz IF input signal in an AM/FM radio receiver. After near-zero IF mixing to a 165 kHz offset frequency, the I and Q signals are digitized by two fifth-order, 32 times oversampling continuous-time ΣΔ modulators. A prototype IC includes digital filters for decimation and the shift of the near-zero-IF to dc. The baseband output signal has maximum carrier-to-noise ratios of 94 dB in 9 kHz (AM) and 79 dB in 200 kHz (FM), with 97 and 82 dB dynamic range, respectively. The IM3 distance is 84 dB at full-scale A/D converter input signal. Including downconversion and decimation filtering, the IF A/D conversion system occupies 1.3 mm2 in 0.25-μm standard digital CMOS. The ΣΔ modulators consume 8 mW from a 2.5-V supply voltage, and the digital filters consume 11 mW  相似文献   

8.
The trend toward digital signal processing in communication systems has resulted in a large demand for fast accurate analog-to-digital (A/D) converters, and advances in VLSI technology have made ΔΣ modulator-based A/D converters attractive solutions. However, rigorous theoretical analyses have only been performed for the simplest ΔΣ modulator architectures. Existing analyses of more complicated ΔΣ modulators usually rely on approximations and computer simulations. In the paper, a rigorous analysis of the granular quantization noise in a general class of ΔΣ modulators is developed. Under the assumption that some input-referred circuit noise or dither is present, the second-order asymptotic statistics of the granular quantization noise sequences are determined and ergodic properties are derived  相似文献   

9.
10.
It is shown that for delta-sigma (ΣΔ) frequency-to-digital conversion (FDC) there is no need for a ΣΔ modulator, since a limited FM signal itself may be considered as an asynchronous ΣΔ bit-stream. By feeding the limited FM signal directly to a sinc2 ΣΔ decimator, a triangularly weighted zero-crossing counter FDC is introduced, providing ΣΔ noise shaping. The results measured confirm the theory  相似文献   

11.
A low-power low-voltage fully integrated fast-locking quad-band (850/900/1800/1900-MHz) GSM-GPRS transmitter is described. It exploits closed-loop phase-locked loop (PLL) upconversion using a modulated fractional-N frequency synthesizer with digital auto-calibration. It uses a type-I PLL in a mostly digital IC with no external components and achieves a lock time of 43 /spl mu/s, a tuning range of 500 MHz, receive-band phase noise of -158dBc/Hz and -165 dBc/Hz for the high and low bands, respectively, and reference feed through of -93.9 dBc. It is implemented in 2.1 mm/sup 2/ using a 0.13-/spl mu/m CMOS process and meets all quad-band GSM transmitter specifications with a current consumption of only 28 mA from a single 1.5-V power supply.  相似文献   

12.
In this paper, the design of a continuous-time baseband sigma-delta (ΣΔ) modulator with an integrated mixer for intermediate-frequency (IF) analog-to-digital conversion is presented. This highly linear IF ΣΔ modulator digitizes a GSM channel at intermediate frequencies up to 50 MHz. The sampling rate is not related to the input IF and is 13.0 MHz in this design. Power consumption is 1.8 mW from a 2.5-V supply. Measured dynamic range is 82 dB, and third-order intermodulation distortion is -84 dB for two -6-dBV IF input tones. Two modulators in quadrature configuration provide 200-kHz GSM bandwidth. Active area of a single IF ΣΔ modulator is 0.2 mm2 in 0.35-μm CMOS  相似文献   

13.
The area ratio of analog to digital for mixed-mode chip has been inversely proportional to the process design rule for a given dynamic range objective, in contradiction to the LSI trend. This paper presents a design approach to realize a high degree of size reduction with process design rules for analog circuitry and a signal processing architecture for digital circuitry. A five-level current-mode ΣΔ digital-to-analog converter (DAC) system reveals full scale total harmonic: distortion plus noise (THD+N) of -90 dB and dynamic-range of 100 dB at 3 V (low power of 22 mW). Analog-area down-scaling can be accomplished by this architecture to be 1.09 mm2, using 0.6-μm double-poly double-metal (DPDM) CMOS. For the digital filter, a pipeline instruction sequence with multiplierless architecture also gives small area of 1.98 mm2  相似文献   

14.
A quadrature bandpass ΔΣ modulator IC facilitates monolithic digital-radio-receiver design by allowing straightforward “complex A/D conversion” of an image reject mixer's I and Q, outputs. Quadrature bandpass ΔΣ modulators provide superior performance over pairs of real bandpass ΔΣ modulators in the conversion of complex input signals, using complex filtering embedded in ΔΣ loops to efficiently realize asymmetric noise-shaped spectra. The fourth-order prototype IC, clocked at 10 MHz, converts narrowband 3.75-MHz I and Q inputs and attains a dynamic range of 67 dB in 200-kHz (GSM) bandwidth, increasing to 71 and 77 dB in 100- and 30-kHz bandwidths, respectively. Maximum signal-to-noise plus distortion ratio (SNDR) in 200-kHz bandwidth is 62 dB. Power consumption is 130 mW at 5 V. Die size in a 0.8-μm CMOS process is 2.4×1.8 mm2   相似文献   

15.
The modulator of a bandpass analog/digital (A/D) converter, with 63 dB signal/noise for broadcast AM bandwidth signals centered at 455 kHz, has been implemented by modifying a commercial digital-audio sigma-delta (ΣΔ) converter. It is the first reported fully monolithic implementation of bandpass noise shaping and has applications to digital radio  相似文献   

16.
17.
This work presents a study of the extended counting technique for a 1.2-V micropower voice-band A/D converter. This extended counting technique is a blend of ΣΔ modulation with its high resolution but relatively low speed and algorithmic conversion with its higher speed but lower accuracy. To achieve this, the converter successively operates first as a first-order ΣΔ modulator to convert the most significant bits, and then the same hardware is used as an algorithmic converter to convert the remaining least significant bits. An experimental prototype was designed in 0.8-μm CMOS. With a 1.2-V power supply, it consumes 150 μW of power at a 16-kHz Nyquist sampling frequency. The measured peak S/(N+THD) was 80 dB and the dynamic range 82 dB. The converter core including the controller and all reconstruction logic occupies about 1.3×1 mm2 of chip area. This is considerably less than a complete ΣΔ modulation A/D converter where the digital decimation filter would occupy a significant amount of chip area  相似文献   

18.
A new low-cost concept for a system-on-chip Bluetooth solution is proposed in this paper. The single chip includes all necessary baseband and RF parts to achieve full Bluetooth functionality and is implemented in a standard 0.25-μm CMOS technology. The two-point modulation ΣΔ fractional N phase-locked loop achieves a phase noise of -124 dBc/Hz at 3-MHz offset. The sensitivity of the embedded low-IF receiver is measured to be -82 dBm at a bit error rate of 0.1%. The power supply voltages for the digital and analog parts are internally regulated to 2.65 V. The maximum current consumption of the analog part is 60 mA  相似文献   

19.
A two-channel multibit ΣΔ audio digital-to-analog converter (DAC) with on-chip digital phase-locked loop and sample-rate converter is described. The circuit requires no over-sampled synchronous clocks to operate and rejects input sample clock jitter above 16 Hz at 6 dB/octave. A second-order modulator with a multibit quantizer, switched-capacitor (SC) DAC, and single-ended second-order SC filter provides a measured out-of-band noise of -63 dBr with less than 0.1° phase nonlinearity. Measured S/(THD+N) of the DAC channel including a 0-63 dB, 1 dB/step attenuator is greater than 90 dB unweighted. The circuit is implemented in 0.6-μm DPDM CMOS, dissipating 220 mW at 5 V. Die size is 3 mm×4 mm  相似文献   

20.
A fully differential fourth-order bandpass ΔΣ modulator is presented. The circuit is targeted for a 100-MHz GSM/WCDMA-multimode IF-receiver and operates at a sampling frequency of 80 MHz. It combines frequency downconversion with analog-to-digital conversion by directly sampling an input signal from an intermediate frequency of 100 MHz to a digital intermediate frequency of 20 MHz. The modulator is based on a double-delay single-op amp switched-capacitor (SC) resonator structure which is well suited for low supply voltages. Furthermore, the center frequency of the topology is insensitive to different component nonidealities. The measured peak signal-to-noise ratio is 80 and 42 dB for 270 kHz (GSM) and 3.84-MHz (WCDMA) bandwidths, respectively. The circuit is implemented with a 0.35-μm CMOS technology and consumes 56 mW from a 3.0-V supply  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号