首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An electrochemical technique was adopted to investigate the removal of Cr(VI) species and total chromium (TCr) from aqueous solution at a laboratory scale. The electrodes of stainless steel nets (SSNE) coated with single wall carbon nanotubes (SWCNTs@SSNE) were used as both anode and cathode. Three parameters, including solution pH, voltage and electrolyte concentration, were studied to explore the optimal condition of chromium removal. The optimal parameters were found to be pH 4, voltage 2.5 V and electrolyte concentration 10 mg/L. Under these conditions, the Cr(VI) and TCr removal had a high correlation with the amount of SWCNTs coated on the electrodes, with coefficients of the regression equations 0.953 and 0.928, respectively. The mechanism of Cr(VI) removal was also investigated. X-ray photoelectron spectroscopy (XPS) study and scanning electron microscope (SEM) picture showed that the process of chromium removal involved the reduction of Cr(VI) to Cr(III) on the cathode, and then the adsorption of Cr(III) by SWCNTs on the cathode. The study results indicated that the proposed method provided an interesting means to remove chromium species from aqueous solution, especially Cr(VI) in acidic condition.  相似文献   

2.
Hu J  Chen C  Zhu X  Wang X 《Journal of hazardous materials》2009,162(2-3):1542-1550
The batch removal of hexavalent chromium (Cr(VI)) from aqueous solution by using oxidized multiwalled carbon nanotubes (MWCNTs) was studied under ambient conditions. The effect of pH, initial concentration of Cr(VI), MWCNT content, contact time and ionic strength on the removal of Cr(VI) was also investigated. The removal was favored at low pH with maximum removal at pH <2. The adsorption kinetics was modeled by first-order reversible kinetics, pseudo-first-order kinetics, pseudo-second-order kinetics, and intraparticle diffusion models, respectively. The rate constants for all these kinetic models were calculated, and the results indicate that pseudo-second-order kinetics model was well suitable to model the kinetic adsorption of Cr(VI). The removal of chromium mainly depends on the occurrence of redox reaction of adsorbed Cr(VI) on the surface of oxidized MWCNTs to the formation of Cr(III), and subsequent the sorption of Cr(III) on MWCNTs appears as the leading mechanism for chromium uptake to MWCNTs. The presence of Cr(III) and Cr(VI) on oxidized MWCNTs was confirmed by the X-ray photoelectron spectroscopic analysis. The application of Langmuir and Freundlich isotherms are applied to fit the adsorption data of Cr(VI). Equilibrium data were well described by the typical Langmuir adsorption isotherm. Overall, the study demonstrated that MWCNTs can effectively remove Cr(VI) from aqueous solution under a wide range of experimental conditions, without significant Cr(III) release.  相似文献   

3.
The simultaneous adsorption of hexavalent chromium (Cr(VI)) and trivalent arsenic (As(III)) in single component and binary systems has been studied by activated carbon (AC). The capacity of Cr(VI) in the single experiment is greater than that of As(III) onto AC. The effects of various parameters like initial concentration, pH and temperature have been considered in the experiment. Cr(VI) removal is pH dependent and found to be maximum at pH 2.0. While, As(III) is found to be maximum at pH 7.0 in the single adsorption experiment. In the binary adsorption of As(III), the uptake of As(III) is generally higher than the single uptake. In the single adsorption the maximum adsorption rate of As(III) is 34% and in the binary metal mixtures the maximum adsorption rate of As(III) is 40% while the initial concentration is 5mg/L. So in the binary system the Cr(VI) and As(III) are thought to be synergistic with respect to the single As(III) situation.  相似文献   

4.
In this paper, we have presented the results of Cr(VI) and Cr(III) removal from aqueous phase by different aquatic weeds as biosorbents. Batch kinetic and equilibrium experiments were conducted to determine the adsorption kinetic rate constants and maximum adsorption capacities of selected biosorbents. In most of the cases, adsorption followed a second-order kinetics. For Cr(III), maximum adsorption capacity was exhibited by reed mat (7.18mg/g). In case of Cr(VI), mangrove leaves showed maximum removal/reduction capacity (8.87mg/g) followed by water lily (8.44mg/g). There was a significant difference in the concentrations of Cr(VI) and total chromium removed by the biosorbents. In case of Cr(VI) removal, first it was reduced to Cr(III) with the help of tannin, phenolic compounds and other functional groups on the biosorbent and subsequently adsorbed. Acid treatment significantly increased Cr(VI) removal capacity of the biosorbents whereas, alkali treatment reduced the Cr(VI) removal capacities of the biosorbents. FTIR spectrum showed the changes in functional groups during acid treatment and biosorption of Cr(VI) and Cr(III). Aquatic weeds seem to be a promising biosorbent for the removal of chromium ions from water environment.  相似文献   

5.
Bioremediation of Cr(VI) in contaminated soils   总被引:5,自引:0,他引:5  
Ex situ treatment of hexavalent chromium (Cr(VI)) contaminated soil using a bioreactor-biosorption system was evaluated as a novel remediation alternative. Leaching of Cr(VI) from the contaminated soil using various eluents showed that desorption was strongly affected by the solution pH. The leaching process was accelerated at alkaline conditions (pH 9). Though, desorption potential of ethylene diamine tetra acetic acid (EDTA) was the maximum among various eluents tried, molasses (5 g/L) could also elute 72% of Cr(VI). Cr(VI) reduction studies were carried out under aerobic and facultative anaerobic conditions using the bacterial isolates from contaminated soil. Cr(VI) reduction was moderately higher in aerobic conditions than in facultative anaerobic conditions. The effect of various electron donors on Cr(VI) reduction was also investigated. Among five electron donors screened, peptone (10 g/L) showed maximum Cr(VI) reduction followed by molasses (10 g/L). The time required for complete Cr(VI) reduction was increased with increase in the initial Cr(VI) concentration. However, specific Cr(VI) reduction was increased with increase in initial Cr(VI) concentration. Sulfates and nitrates did not compete with Cr(VI) for accepting the electrons. A bioreactor was developed for the detoxification of Cr(VI). Above 80% of Cr(VI) reduction was achieved in the bioreactor with an initial Cr(VI) concentration of 50 mg/L at an HRT of 8 h. An adsorption column was developed using Ganoderm lucidum (a wood rooting fungus) as the adsorbent for the removal of trivalent chromium (Cr(III)) and excess electron donor from the effluent of the bioreactor. The specific Cr(III) adsorption capacity of G. lucidum in the column was 576 mg/g. The new biosystem seems to be a promising alternative for the ex situ bioremediation of Cr(VI) contaminated soils.  相似文献   

6.
This work presents conditions for hexavalent and trivalent chromium removal from aqueous solutions using natural, protonated and thermally treated Ectodermis of Opuntia. A removal of 77% of Cr(VI) and 99% of Cr(III) can be achieved. The sorbent material is characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, infrared spectroscopy, thermogravimetric analysis, before and after the contact with the chromium containing aqueous media. The results obtained from the characterization techniques indicate that the metal ion remains on the surface of the sorbent material. The percentage removal is found to depend on the initial chromium concentration and pH. The Cr(VI) and Cr(III) uptake process is maximum at pH 4, using 0.1g of sorbent per liter of aqueous solution. The natural Ectodermis of Opuntia showed a chromium adsorption capacity that was adequately described by the Langmuir adsorption isotherm. Finally, an actual mine drainage sample that contained Cd, Cr, Cu, Fe Zn, Ni and Pb was tested under optimal conditions for chromium removal and Ectodermis of Opuntia was found to be a suitable sorbent material. The use of this waste material for the treatment of metal-containing aqueous solutions as well as mine drainage is effective and economical.  相似文献   

7.
This paper reports the feasibility of using pre-consumer processing agricultural waste to remove Cr(VI) from synthetic wastewater under different experimental conditions. For this, rice husk, has been used after pre-treatments (boiling and formaldehyde treatment). Effect of various process parameters, namely, pH, adsorbent dose, initial chromium concentration and contact time has been studied in batch systems. The removal of chromium was dependent on the physico-chemical characteristics of the adsorbent, adsorbate concentration and other studied process parameters. Maximum metal removal was observed at pH 2.0. The efficiencies of boiled and formaldehyde treated rice husk for Cr(VI) removal were 71.0% and 76.5% respectively for dilute solutions at 20gl(-1) adsorbent dose. The experimental data were analyzed using Freundlich, Langmuir and Dubinin-Radushkevich (D-R) isotherm models. It was found that Freundlich and D-R models fitted well. The results revealed that the hexavalent chromium is considerably adsorbed on rice husk and it could be an economical method for the removal of hexavalent chromium from aqueous systems. FTIR and SEM were recorded, before and after adsorption, to explore number and position of the functional groups available for Cr(VI) binding on to studied adsorbents and changes in adsorbent surface morphology.  相似文献   

8.
Grape waste as a biosorbent for removing Cr(VI) from aqueous solution   总被引:3,自引:0,他引:3  
Grape waste generated in wine production is a cellulosic material rich in polyphenolic compounds which exhibits a high affinity for heavy metal ions. An adsorption gel was prepared from grape waste by cross-linking with concentrated sulfuric acid. It was characterized and utilized for the removal of Cr(VI) from synthetic aqueous solution. Adsorption tests were conducted in batch mode to study the effects of pH, contact time and adsorption isotherm of Cr(VI), which followed the Langmuir type adsorption and exhibited a maximum loading capacity of 1.91 mol/kg at pH 4. The adsorption of different metal ions like Cr(VI), Cr(III), Fe(III), Zn(II), Cd(II) and Pb(II) from aqueous solution at different pH values 1-5 has also been investigated. The cross-linked grape waste gel was found to selectively adsorb Cr(VI) over other metal ions tested. The results suggest that cross-linked grape waste gel has high possibility to be used as effective adsorbent for Cr(VI) removal.  相似文献   

9.
To improve the removal efficiency of heavy metals from wastewater, the surface of a fungal biomass was modified to obtain a high-capacity biosorbent for Cr(VI) in wastewater. The effects of pH, initial concentration, and sorption time on Cr(VI) removal by polyethylenimine (PEI)-modified Phanerochaete chrysosporium were investigated. The biomass adsorption capacity was significantly dependent on the pH of the solution, and the optimum pH was approximately 3.0. The maximum removal for Cr(VI) was 344.8 mg/g as determined with the Langmuir adsorption isotherm. Pseudo-first-order Lagergren model is better than pseudo-second-order Lagergren model when simulating the kinetic experiment results. Furthermore, an amount of Cr(VI) was reduced to Cr(III), indicating that some reactions occurred on the surface of the biomass leading to the reduction of Cr(VI). The point of zero potential for the modified biomass increased from an initial pH of 3.0 to a much higher value of 10.8, indicating that the PEI-modified biomass is better than the pristine biomass for adsorption of anionic adsorbates. Results showed that the PEI-modified biosorbent presented high efficiency in treating Cr(VI)-contaminated wastewater.  相似文献   

10.
Chromium removal from electroplating wastewater by coir pith   总被引:3,自引:0,他引:3  
Coir pith is a by-product from padding used in mattress factories. It contains a high amount of lignin. Therefore, this study investigated the use of coir pith in the removal of hexavalent chromium from electroplating wastewater by varying the parameters, such as the system pH, contact time, adsorbent dosage, and temperature. The maximum removal (99.99%) was obtained at 2% (w/v) dosage, particle size <75microm, at initial Cr(VI) 1647mgl(-1), system pH 2, and an equilibrium time of 18h. The adsorption isotherm of coir pith fitted reasonably well with the Langmuir model. The maximum Cr(VI) adsorption capacity of coir pith at 15, 30, 45 and 60 degrees C was 138.04, 197.23, 262.89 and 317.65mgCr(VI)g(-1) coir pith, respectively. Thermodynamic parameters indicated an endothermic process and the adsorption process was favored at high temperature. Desorption studies of Cr(VI) on coir pith and X-ray absorption near edge structure (XANES) suggested that most of the chromium bound on the coir pith was in Cr(III) form due to the fact that the toxic Cr(VI) adsorbed on the coir pith by electrostatic attraction was easily reduced to less toxic Cr(III). Fourier transform infrared (FT-IR) spectrometry analysis indicated that the carbonyl (CO) groups and methoxy (O-CH(3)) groups from the lignin structure in coir pith may be involved in the mechanism of chromium adsorption. The reduced Cr(III) on the coir pith surface may be bound with CO groups and O-CH(3) groups through coordinate covalent bonding in which a lone pair of electrons in the oxygen atoms of the methoxy and carbonyl groups can be donated to form a shared bond with Cr(III).  相似文献   

11.
This study proposed an oil palm by-product as a low-cost adsorbent for the removal of hexavalent chromium [Cr (VI)] from aqueous solution. Adsorption of Cr (VI) by sulphuric acid and heat-treated oil palm fibre was conducted using batch tests. The influence of pH, contact time, initial chromium concentration and adsorbent dosage on the removal of Cr (VI) from the solutions was investigated. The optimum initial pH for maximum uptake of Cr (VI) from aqueous solution was found to be 1.5. The removal efficiency was found to correlate with the initial Cr (VI) concentration, adsorbent dosage as well as the contact time between Cr (VI) and the adsorbent. The adsorption kinetics tested with pseudo first order and pseudo second order models yielded high R(2) values from 0.9254 to 0.9870 and from 0.9936 to 0.9998, respectively. The analysis of variance (ANOVA) showed significant difference between the R(2) values of the two models at 99% confidence level. The Freundlich isotherm (R(2)=0.8778) described Cr (VI) adsorption slightly better than the Langmuir isotherm (R(2)=0.8715). Difficulty in desorption of Cr (VI) suggests the suitability of treated oil palm fibre as a single-use adsorbent for Cr (VI) removal from aqueous solution.  相似文献   

12.
A hydrous titanium(IV) oxide was prepared to study the adsorption characteristics and the separation of chromium species. Batch sorption studies have been carried out to determine the effect of pH on the sorption of Cr(III) and Cr(VI) on hydrous TiO2. An excellent separation efficiency of Cr(III) and Cr(VI) was obtained at pH 2. The adsorption percentage of Cr(VI) was above 99%, whereas that of the Cr(III) was less than 1% at this pH. The adsorption isotherm of Cr(VI) on hydrous TiO2 at pH 2 was in good agreement with the Langmuir isotherm. The maximum adsorption capacity of Cr(VI) on TiO2 was 5 mg g(-1). The rate of adsorption of Cr(VI) by hydrous TiO2 with average particle diameter 250 and 500 microm has been studied under particle diffusion controlled conditions. The diffusion coefficients of Cr(VI) for both hydrous TiO2 having average particle diameter of 250 and 500 microm was calculated at pH 2 as 3.84 x 10(-10) m2 s(-1) and 8.86 x 10(-10) m2 s(-1), respectively.  相似文献   

13.
The removal of Cr(VI) from aqueous solution by rice straw, a surplus agricultural byproduct was investigated. The optimal pH was 2.0 and Cr(VI) removal rate increased with decreased Cr(VI) concentration and with increased temperature. Decrease in straw particle size led to an increase in Cr(VI) removal. Equilibrium was achieved in about 48 h under standard conditions, and Cr(III), which appeared in the solution and remained stable thereafter, indicating that both reduction and adsorption played a part in the Cr(VI) removal. The increase of the solution pH suggested that protons were needed for the Cr(VI) removal. A relatively high level of NO(3)(-) notably restrained the reduction of Cr(VI) to Cr(III), while high level of SO(4)(2-) supported it. The promotion of the tartaric acid modified rice straw (TARS) and the slight inhibition of the esterified rice straw (ERS) on Cr(VI) removal indicated that carboxyl groups present on the biomass played an important role in chromium remediation even though were not fully responsible for it. Isotherm tests showed that equilibrium sorption data were better represented by Langmuir model and the sorption capacity of rice straw was found to be 3.15 mg/g.  相似文献   

14.
Adsorption isotherms of chromium ions in aqueous solution have been experimentally measured on a granular activated carbon (GAC) and on a char of South African coal (CSAC). Experimental results show that the adsorption capacity for the GAC strongly depends on solution pH and salinity, with maximum values around 7mg/g at neutral pH and low salinity levels. On the contrary, the CSAC shows a smaller adsorption capacity, near 0.3mg/g, which slightly decreases by increasing pH and salinity levels. Chromium adsorption mainly depends on the availability of chromium ions in solution and on the occurrence of redox reactions between the surface groups and the Cr(VI) which lead to the formation of Cr(III). The reduction of Cr(VI) and the following sorption of Cr(III) cations appears as the leading mechanism for chromium uptake on the CSAC. A similar behaviour can be observed for the GAC at pH below 3. On the contrary, at pH>7, the multicomponent competitive adsorption of Cr(VI), OH(-) and Cl(-) has to be considered.  相似文献   

15.
Hexavalent chromium is a well-known highly toxic metal, considered a priority pollutant. Industrial sources of Cr(VI) include leather tanning, cooling tower blowdown, plating, electroplating, anodizing baths, rinse waters, etc. The most common method applied for chromate control is reduction of Cr(VI) to its trivalent form in acid (pH approximately 2.0) and subsequent hydroxide precipitation of Cr(III) by increasing the pH to approximately 9.0-10.0 using lime. Existing overviews of chromium removal only cover selected technologies that have traditionally been used in chromium removal. Far less attention has been paid to adsorption. Herein, we provide the first review article that provides readers an overview of the sorption capacities of commercial developed carbons and other low cost sorbents for chromium remediation. After an overview of chromium contamination is provided, more than 300 papers on chromium remediation using adsorption are discussed to provide recent information about the most widely used adsorbents applied for chromium remediation. Efforts to establish the adsorption mechanisms of Cr(III) and Cr(VI) on various adsorbents are reviewed. Chromium's impact environmental quality, sources of chromium pollution and toxicological/health effects is also briefly introduced. Interpretations of the surface interactions are offered. Particular attention is paid to comparing the sorption efficiency and capacities of commercially available activated carbons to other low cost alternatives, including an extensive table.  相似文献   

16.
针对电镀、冶金、印染等行业产生的含铬废水所导致的环境污染难题,以城市污泥热解获得的污泥基生物炭(SB)为载体,制备了污泥基生物炭负载纳米零价铁(nZVI-SB)材料用于去除水中的Cr(Ⅵ),探究了铁炭质量比、初始pH值、投加量、温度等因素对去除Cr(Ⅵ)的影响。通过SEM-EDS、XRD和XPS等手段对n ZVI-SB去除Cr(Ⅵ)的机制进行分析。结果表明:n ZVI-SB对Cr(Ⅵ)废水具有较好的去除能力。在投加量0.5 g/L、初始pH=2、温度40℃条件下,Fe与SB质量比为1∶1的nZVI-SB(1∶1)对Cr(Ⅵ)吸附量最大为150.60 mg/g。Cr(Ⅵ)去除过程可通过Langmuir吸附等温式与准二级动力学方程进行拟合。nZVI-SB对Cr(Ⅵ)去除机制主要包括吸附、还原和共沉淀。本文表明污泥基生物炭与纳米零价铁可以协同发挥除Cr(Ⅵ)作用。  相似文献   

17.
Aim of this study is the determination of the Cr(VI) removal efficiency of treated pine sawdust and also to find out the thermodynamic and kinetic parameters of Cr(VI) removal process in batch systems. Sawdust has been treated with 1,5-disodium hydrogen phosphate before the adsorption experiments. The effects of initial concentration of Cr(VI) ion, temperature, amount of adsorbent and pH of the solution on adsorption have been investigated. Optimum conditions for adsorption were determined as T=40 degrees C, sawdust dose=4 g, pH 2, by using the results of these experiments and an additional set of experiments was performed under these optimum conditions in order to see the change in the adsorption efficiency. Removal of chromium ion was found as highly dependent on pH and initial Cr(VI) concentration of the solution. In order to find out thermodynamic and kinetic parameters equilibrium adsorption models were applied. Although experimental data confirm with both Langmuir and Freundlich isotherm models, they suit most on Langmuir isotherms. Adsorption rate constant was determined from Lagergren equation. Equilibrium constants, adsorption free energy, enthalpy and entropy change values were also determined. It was found that adsorption process follows first order kinetic and adsorption of Cr(VI) on sawdust has the spontaneous nature.  相似文献   

18.
Chromium removal from aqueous solution by the ferrite process   总被引:1,自引:0,他引:1  
This research summarises the results of the study on the removal of chromium by applying the ferrite process to the solutions obtained from two different Cr(VI) reduction processes utilising sodium sulphite and ferrous sulphate as reducing agents. For both solutions containing trivalent chromium ions, the optimum treatment conditions were determined. The generated sludges were characterised by XRD analysis and physical tests. In addition, to explore the dissolution properties of the sludges obtained, they were contacted with the solutions of sulphuric, citric, tartaric, oxalic and ascorbic acids and EDTA. Also, the sludge samples were subjected to standard toxicity characterisation leaching procedure (TCLP) test of USEPA in order to determine the pollution potential. An efficient Cr(III) removal (about 100%) in the solution from the Cr(VI) reduction process utilising sodium sulphite as reducing agent was achieved when the solution was treated at pH 9 and 50 degrees C for 60 min in the presence of Fe2+/Cr3+ weight ratio of 16. For the other Cr(III) solution prepared from Cr(VI) reduction by ferrous sulphate, a Fe2+/Cr3+ weight ratio of 17.9 at the same conditions was found to produce complete removal of Cr(III). It was determined that the spynel chromium-iron compounds obtained in the process were in the form of chromite (Cr2FeO4). Dissolution experiments and TCLP tests show that the concentrations of the chromium dissolved from both sludges were below the limit given as 5 mg l(-1) by USEPA. The results showed that Cr(III) removal through ferrite process provides the advantages that the sludges generated are non-voluminous, easily separable and environmentally stable.  相似文献   

19.
Chromium (VI) adsorption on boehmite   总被引:1,自引:0,他引:1  
Boehmite was synthesized and characterized in order to study the adsorption behavior and the removal of Cr(VI) ions from aqueous solutions as a function of contact time, initial pH solution, amount of adsorbent and initial metal ion concentration, using batch technique. Adsorption data of Cr(VI) on the boehmite were analyzed according to Freundlich, Langmuir and Dubinin-Radushkevich (D-R) adsorption models. Thermodynamic parameters for the adsorption system were determinated at 293, 303, 313 and 323K temperatures. The kinetic values and thermodynamic parameters from the adsorption process show that the Cr(VI) ions adsorption on boehmite is an endothermic and spontaneous process. These results show that the boehmite could be considered as a potential adsorbent for chromium ions in aqueous solutions.  相似文献   

20.
A solid phase extraction procedure has been established for chromium speciation in natural water samples. The procedure is based on the solid phase extraction of the Cr(VI)-ammonium pyrrolidine dithiocarbamate (APDC) chelate on multiwalled carbon nanotubes (MWNTs). After oxidation of Cr(III) to Cr(VI) by using hydrogen peroxide, the presented method was applied to the determination of the total chromium. The level of Cr(III) is calculated by difference of total chromium and Cr(VI) levels. The procedure was optimized for some analytical parameters including pH, eluent type, flow rates of sample and eluent, matrix effects, etc. The detection limit based on 3 sigma criterion was 0.90 microg L(-1) for Cr(VI). The adsorption capacity of multiwalled carbon nanotubes was 9.50 mg g(-1) Cr (VI). The presented method was applied for the speciation of chromium in natural water sample with satisfactory results (recoveries>95%, R.S.D.'s<9%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号