共查询到20条相似文献,搜索用时 0 毫秒
1.
本文提出一种基于L_(2,1)模和图正则化的低秩迁移子空间学习方法.首先,在低秩重构过程中通过对重构矩阵施加具有旋转不变性的L_(2,1)模约束,可在挖掘目标域数据的关键特征的同时提高算法对不同姿态图片分类的鲁棒性.其次,在目标函数中引入图结构的正则化,使得迁移时数据中的局部几何结构信息得以充分利用,进一步提高了分类性能.最后,为解决源域数据较少导致的欠完备特征空间覆盖问题,在公共子空间中利用源域数据和目标域数据联合构造字典,保证了重构的鲁棒性.在Caltech256, Office, CMU–PIE, COIL20, USPS, MNIST, VOC2007和MSRC数据库上的大量对比实验验证了本文方法的有效性和鲁棒性. 相似文献
2.
针对多视角子空间聚类问题,提出基于隐式低秩稀疏表示的多视角子空间聚类算法(LLSMSC).算法构建多个视角共享的隐式结构,挖掘多视角之间的互补性信息.通过对隐式子空间的表示施加低秩约束和稀疏约束,捕获数据的局部结构和稀疏结构,使聚类结果更准确.同时,使用基于增广拉格朗日乘子交替方向最小化算法高效求解优化问题.在6个不同数据集上的实验验证LLSMSC的有效性和优越性. 相似文献
3.
4.
融合异构特征的子空间迁移学习算法 总被引:2,自引:0,他引:2
特征迁移重在领域共有特征间学习,然而其忽略领域特有特征的判别信息,使算法的适应性受到一定的局限. 针对此问题,提出了一种融合异构特征的子空间迁移学习(The subspace transfer learning algorithm integrating with heterogeneous features,STL-IHF)算法.该算法将数据的特征空间看成共享和特有两个特征子空间的组合,同时基于经验风险最 小框架将共享特征和特有特征共同嵌入到支持向量机(Support vector machine,SVM)的训练过程中.其在共享特征子空间上实现知识迁移的 同时兼顾了领域特有的异构信息,增强了算法的适应性.模拟和真实数据集上的实验结果表明了所提方法的有效性. 相似文献
5.
6.
Wei Lai Wang Xiaofeng Wu Aihua Zhou Rigui Zhu Changming 《Neural Processing Letters》2018,48(3):1671-1691
Neural Processing Letters - Low-rank representation (LRR) and its variants have been proved to be powerful tools for handling subspace segmentation problems. In this paper, we propose a new... 相似文献
7.
在机器学习中,迁移学习被证明能有效使用一个领域信息提高另一个领域中受训模型的分类精度. 迁移学习总是假设相关领域间共享某些隐含因素,但在当前的迁移学习方法中,该部分隐含因素依然未得到充分 探讨.本研究引入低维共享隐空间的迁移学习方法,基于经典支持向量机(Support vector machine, SVM)分类模型得到融入共享隐空间的迁移支持向量机,该模型较以往相关方法能更好地利用隐空间这一有效信息,从而提高所得分类器 的泛化性能.相关实验结果亦验证了所提方法的有效性. 相似文献
8.
Lai Wei Yan Zhang Jun Yin Rigui Zhou Changming Zhu Xiafeng Zhang 《Neural Processing Letters》2019,50(2):1035-1050
Low-rank representation (LRR) and its extensions have shown prominent performances in subspace segmentation tasks. Among these algorithms, structured-constrained low-rank representation (SCLRR) is proved to be superior to classical LRR because of its usage of structure information of data sets. Compared with LRR, in the objective function of SCLRR, an additional constraint term is added to compel the obtained coefficient matrices to reveal the subspace structures of data sets more precisely. However, it is very difficult to determine the best value for the corresponding parameter of the constraint term, and an improper value will decrease the performance of SCLRR sharply. For the sake of alleviating the problem in SCLRR, in this paper, we proposed an improved structured low-rank representation (ISLRR). Our proposed method introduces the structure information of data sets into the equality constraint term of LRR. Hence, ISLRR avoids the adjustment of the extra parameter. Experiments conducted on some benchmark databases showed that the proposed algorithm was superior to the related algorithms. 相似文献
9.
10.
在大数据时代,互联网社会网络和其他复杂网络中的链接预测问题研究成为热门领域。链接预测相关的方法已被广泛地应用于社会网络关系挖掘、个性化推荐和生物制药等领域。在链接预测问题中,通常使用相似性矩阵来表示网络中任意节点之间存在链接的可能性,因此相似性矩阵的计算是链接预测中至关重要的一步。近年来的研究中,大多数方法是基于已知网络中数据的分析,通过网络潜在结构设计机器学习算法构造相似性矩阵。在全局低秩的网络结构假设下,结合网络中节点特征的局部约束,提出了一种基于数据的链接预测优化算法,并针对复杂网络数据链接预测问题设计了可扩展的分治方法,便于分布式环境中对大规模数据进行求解。通过在多个真实数据集上的实验和结果分析,基于低秩结构和局部约束矩阵估计的链接预测分治方法能够取得较好的效果,并对复杂的网络结构数据具有较强的可扩展性。 相似文献
11.
Computing a few eigenpairs from large-scale symmetric eigenvalue problems is far beyond the tractability of classic eigensolvers when the storage of the eigenvectors in the classical way is impossible. We consider a tractable case in which both the coefficient matrix and its eigenvectors can be represented in the low-rank tensor train formats. We propose a subspace optimization method combined with some suitable truncation steps to the given low-rank Tensor Train formats. Its performance can be further improved if the alternating minimization method is used to refine the intermediate solutions locally. Preliminary numerical experiments show that our algorithm is competitive to the state-of-the-art methods on problems arising from the discretization of the stationary Schrödinger equation. 相似文献
12.
特征提取算法通常只单独用到了数据的局部结构或者整体结构,这样将得不到全局最优投影矩阵,且投影矩阵不具备很好的可解释性.为此,提出了一种基于邻域图的低秩投影学习算法.该算法通过在数据的重构残差上施加图约束来保持数据的局部结构,同时引入低秩项来保持整体结构;算法利用L2,1范数行稀疏的性质对投影矩阵进行约束,这样可以剔除冗... 相似文献
13.
针对现有鲁棒图学习忽略多视图间的互补信息和高阶相关性问题,提出一种面向多视图聚类的低秩张量表示学习(LRTRL-MVC)算法。利用鲁棒主成分分析的思想,在去除噪声的干净数据上计算各视图的鲁棒图和转移概率矩阵,然后构建一个包含各视图马尔可夫转移概率矩阵的张量,采用基于张量奇异值分解的核范数来确保目标张量的低秩性质。利用迭代最优化算法求解,将求得的低秩张量作为马尔可夫谱聚类算法的输入得到最终聚类结果。在4个不同类型的公开标准数据集BBCSport、NGs、Yale和MSRCv1上进行实验并与相关的最好多视图聚类算法进行对比,结果表明在3个聚类度量标准下,所提算法的聚类结果均高于其他对比算法。 相似文献
14.
稀疏子空间聚类是近年提出的高维数据聚类框架,针对实际数据并不完全满足线性子空间模型的假设,提出[k]近邻约束的稀疏子空间聚类算法。该算法结合数据的子空间结构,[k]近邻及距离信息,在稀疏子空间模型上,添加[k]近邻约束项。添加的约束项符合距离越小,相似系数越大的直观认识且不改变系数矩阵的稀疏性。在人脸数据集Extended YaleB、ORL、AR,物体图像数据集COIL20及手写数据集USPS上的聚类实验表明提出的算法具有良好的性能。 相似文献
15.
针对最小二乘回归子空间聚类算法存在的数据局部相关性信息缺失、系数矩阵稀疏性不足的缺点,提出局部约束加强的最小二乘回归子空间聚类算法.在原始的最小二乘回归子空间聚类算法的基础上加入数据局部相关性约束,使表示系数矩阵的块对角性质更明显.同时,提出相似度矩阵构造方法,有效提高类内相似度,降低类间相似度.实验表明文中算法可以有效提高聚类的精确度,从而验证算法有效可行. 相似文献
16.
针对判别最小二乘回归(DLSR)对图像噪声鲁棒性不佳的问题,提出一种基于潜子空间去噪的子空间学习图像分类方法(DLSSL).该方法在架构上不同于现有基于回归的分类方法,其在视觉空间与标签空间中引入一个潜在子空间,将传统的图像分类框架改进为两步,即先降噪后分类.该方法先通过欠完备自编码将数据的高阶特征提取到潜在空间,再利用此高阶特征进行回归分类,同时辅以组核范数约束控制类内样本间距离.潜在子空间的引入为算法框架带来了更多灵活性,缓解了视觉空间与标签空间中数据维度与特性的差异,使得欠完备自编码可以有效地对数据进行降噪,提升了分类算法的鲁棒性.在人脸、生物指纹、物体和深度特征数据集上设计了多组对比实验,实验结果表明,算法对于图像中的噪声具有较强的鲁棒性,获得的投影矩阵具有良好的判别性,相比现有图像分类算法,性能更好、普适性更强,能有效地运用于各种图像分类任务. 相似文献
17.
针对标记分布学习算法忽略标记相关性信息及数据存在异常和噪声值的情况,文中提出基于低秩表示的标记分布学习算法(LDL-LRR).利用特征空间的基线性表示样本信息,实现对原始特征空间数据的降维.将低轶表示(LRR)迁移至标记空间,对模型施加低秩约束,把握数据的全局结构.分别使用增广拉格朗日乘子法和拟牛顿法求解LRR和目标函数,再通过最大熵模型预测标记分布.在10个数据集上的对比实验表明,LDL-LRR性能良好,效果稳定. 相似文献
18.
Jia Hongjun Martinez Aleix M. 《IEEE transactions on pattern analysis and machine intelligence》2009,31(5):841-854
The task of finding a low-rank (r) matrix that best fits an original data matrix of higher rank is a recurring problem in science and engineering. The problem becomes especially difficult when the original data matrix has some missing entries and contains an unknown additive noise term in the remaining elements. The former problem can be solved by concatenating a set of r-column matrices that share a common single r-dimensional solution space. Unfortunately, the number of possible submatrices is generally very large and, hence, the results obtained with one set of r-column matrices will generally be different from that captured by a different set. Ideally, we would like to find that solution that is least affected by noise. This requires that we determine which of the r-column matrices (i.e., which of the original feature points) are less influenced by the unknown noise term. This paper presents a criterion to successfully carry out such a selection. Our key result is to formally prove that the more distinct the r vectors of the r-column matrices are, the less they are swayed by noise. This key result is then combined with the use of a noise model to derive an upper bound for the effect that noise and occlusions have on each of the r-column matrices. It is shown how this criterion can be effectively used to recover the noise-free matrix of rank r. Finally, we derive the affine and projective structure-from-motion (SFM) algorithms using the proposed criterion. Extensive validation on synthetic and real data sets shows the superiority of the proposed approach over the state of the art. 相似文献
19.
子空间学习是特征提取领域中的一个重要研究方向,其通过一种线性或非线性的变换将原始数据映射到低维子空间中,并在该子空间中尽可能地保留原始数据的几何结构和有用信息.子空间学习的性能提升主要取决于相似性关系的衡量方式和特征嵌入的图构建手段.文中针对子空间学习中的相似性度量与图构建两大问题进行研究,提出了一种基于核保持嵌入的子空间学习算法(Kernel-preserving Embedding based Subspace Learning,KESL),该算法通过自表示技术自适应地学习数据间的相似性信息和基于核保持的构图.首先针对传统降维方法无法挖掘高维非线性数据的内部结构问题,引入核函数并最小化样本的重构误差来约束最优的表示系数,以期挖掘出有利于分类的数据结构关系.然后,针对现有基于图的子空间学习方法大都只考虑类内样本相似性信息的问题,利用学习到的相似性矩阵分别构建类内和类间图,使得在投影子空间中同类样本的核保持关系得到加强,不同类样本间的核保持关系被进一步抑制.最后,通过核保持矩阵与图嵌入的联合优化,动态地求解出最优表示下的子空间投影.在多个数据集上的实验结果表明,所提算法在分类任务中的性能优于主流的子空间学习算法. 相似文献
20.
GPCA(Generalized Principal Component Analysis)是近几年提出的一种数据聚类和降维方法,它通过将样本聚类为不同的子空间得到样本的低维表达.GPCA方法已经被应用于图像分割、图像聚类等问题.原有的GPCA算法具有指数计算复杂度,很难应用于高维数据的实际处理.文中针对此问题,提出了基于子空间搜索的SGPCA算法,将聚类问题分解为单个平面的单个垂直向量的搜索问题,对不同子空间分别搜索,从而实现多项式复杂度算法.实验表明,新方法不仅计算复杂度低,而且对噪声的鲁棒性也更强. 相似文献