首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Thermoelectric modules experience performance reduction and mechanical failure due to thermomechanical stresses induced by thermal cycling. The present study subjects a thermoelectric module to thermal cycling and evaluates the evolution of its thermoelectric performance through measurements of the thermoelectric figure of merit, ZT, and its individual components. The Seebeck coefficient and thermal conductivity are measured using steady-state infrared microscopy, and the electrical conductivity and ZT are evaluated using the Harman technique. These properties are tracked over many cycles until device failure after 45,000 thermal cycles. The mechanical failure of the TE module is analyzed using high-resolution infrared microscopy and scanning electron microscopy. A reduction in electrical conductivity is the primary mechanism of performance reduction and is likely associated with defects observed during cycling. The effective figure of merit is reduced by 20% through 40,000 cycles and drops by 97% at 45,000 cycles. These results quantify the effect of thermal cycling on a commercial TE module and provide insight into the packaging of a complete TE module for reliable operation.  相似文献   

2.
Bismuth telluride-based materials are already being commercially developed for thermoelectric (TE) cooling devices and power generators. However, the relatively low efficiency, which is characterized by a TE figure of merit, zT, is the main obstacle to more widespread application. Significant advances in the TE performance have been made through boundary engineering via embedding nanoinclusions or nanoscale grains. Herein, an effective approach to greatly enhance the TE performance of p-type BiSbTe material by incorporating carbon microfibers is reported. A high zT of 1.4 at 375 K and high average zT of 1.25 for temperatures in the range of 300 to 500 K is achieved in the BiSbTe/carbon microfiber (BST/CF) composite materials. Their superior TE performance originates from the low thermal conductivity and the relatively high power factor. A TE unicouple device based on the p-type BST/CF composite material and the commercially available n-type bismuth telluride-based material shows a huge cooling temperature drop in the operating temperature range of 299–375 K, and is greatly superior to the unicouple device made of both commercial p-type and n-type bismuth telluride-based material. The materials demonstrate a high average zT and excellent mechanical properties and are strong candidates for practical applications.  相似文献   

3.
A tool for evaluating thin-film thermal conductivity to submicron spatial resolution has been developed. The micro-instrumentation utilizes the thermoreflectance (TR) technique to characterize thermal conductivity and material uniformity. The instrument consists of a heating element for creating temperature gradients and an Invar bar with in?situ temperature monitoring for heat flux measurements. The thin-film sample is sandwiched between the heater and Invar bar while a microscope is used to direct light onto a cross-section of the sample and reflected light is collected with a camera. By using this technique, we can achieve submicron spatial resolution for thermal conductivity and eliminate contributions from thermal contact resistance, thereby also eliminating the need for sample preparation other than cleaving. The method offers temperature resolution of 10?mK, spatial resolution of 200?nm, and thermal conductivity measurement with 0.01?±?0.001?W/mK resolution. The thermal conductivity of a 0.6% ErAs:InGaAlAs thermoelectric (TE) element, prepared by molecular beam epitaxy (MBE) growth, obtained with the new instrument is 2.3?W/mK, while the average thermal conductivity obtained with the 3-omega method is 2.5?W/mK. Energy-dispersive x-ray (EDX) spectroscopy is also used to prove that the elemental composition has uniformity consistent with the material variation observed by the TR technique. Moreover, a temperature profile across a 0.6% ErAs:InGaAlAs TE element on InP substrate is imaged. Two different slopes, corresponding to different thermal conductivities, have been observed, showing that the thermal conductivity of the TE element is lower than that of the InP substrate as expected.  相似文献   

4.
Because of their good electrical transport properties, skutterudites have been widely studied as potential next-generation thermoelectric (TE) materials. One of the main obstacles to further improving their thermoelectric performance has been reducing their relatively high thermal conductivity. To some extent, this hindrance has been partially resolved by filling the voids found in the skutterudite structure with so-called “rattling” atoms. It has been predicted that reducing the dimensionality in a TE material would have a positive effect in enhancing its thermoelectric properties, for example increasing the thermopower and reducing the thermal conductivity. Introducing nanoparticles into the skutterudite materials could therefore have favorable effects on their electrical properties and should also reduce lattice thermal conductivity by introducing extra scattering centers throughout the sample. Nanoparticles may also be used in conjunction with void filling for further reduction of the thermal conductivity of skutterudites. Cobalt triantimonide (CoSb3) samples with different amounts of embedded nanoparticles have been grown, and the electrical and thermal transport properties for these composites have been measured from 10 K to 650 K. The synthetic techniques and electrical and thermal transport data are discussed in this paper.  相似文献   

5.
Possibilities for improving the performance of the flexible thermoelectric (TE) device were discussed on the basis of heat conduction analysis by the finite element method. The flexible TE device consists of two flexible substrates and thin films of n- and p-type TE materials placed between the substrates. To enhance the device performance, the use of higher-performance TE materials and improvement of the flexible substrate will be effective. In the present study, the effect of the thermal conductivity of the materials used in the device on the output voltage was examined. The calculations indicated that there is a certain combination of thermal conductivities of the components which gives the maximum output voltage. Although a lower thermal conductivity of the TE material leads to higher output voltage, influence of the thermal conductivity on the maximum voltage was not significant under the condition of the present study. As a result, it is effective to improve device performance by choosing an appropriate combination of TE material and substrate material. According to the calculations, approximately 60% increase in output voltage is expected compared with that of the present combination of materials used in the prototype device.  相似文献   

6.
In thermoelectricity, continuum theoretical equations are usually used for the calculation of the characteristics and performance of thermoelectric elements, modules or devices as a function of external parameters (material, geometry, temperatures, current, flow, load, etc.). An increasing number of commercial software packages aimed at applications, such as COMSOL and ANSYS, contain vkernels using direct thermoelectric coupling. Application of these numerical tools also allows analysis of physical measurement conditions and can lead to specifically adapted methods for developing special test equipment required for the determination of TE material and module properties. System-theoretical and simulation-based considerations of favorable geometries are taken into account to create draft sketches in the development of such measurement systems. Particular consideration is given to the development of transient measurement methods, which have great advantages compared with the conventional static methods in terms of the measurement duration required. In this paper the benefits of using numerical tools in designing measurement facilities are shown using two examples. The first is the determination of geometric correction factors in four-point probe measurement of electrical conductivity, whereas the second example is focused on the so-called combined thermoelectric measurement (CTEM) system, where all thermoelectric material properties (Seebeck coefficient, electrical and thermal conductivity, and Harman measurement of zT) are measured in a combined way. Here, we want to highlight especially the measurement of thermal conductivity in a transient mode. Factors influencing the measurement results such as coupling to the environment due to radiation, heat losses via the mounting of the probe head, as well as contact resistance between the sample and sample holder are illustrated, analyzed, and discussed. By employing the results of the simulations, we have developed an improved sample head that allows for measurements over a larger temperature interval with enhanced accuracy.  相似文献   

7.
The development of thermoelectrics (TE) for energy conversion is in the transition phase from laboratory research to device development. There is an increasing demand to accurately determine the module efficiency, especially for the power generation mode. For many TE, the figure of merit, ZT, of the material sometimes cannot be fully realized at the device level. Reliable efficiency testing of thermoelectric modules is important to assess the device ZT and provide end-users with realistic values for how much power can be generated under specific conditions. We conducted a general survey of efficiency testing devices and their performance. The results indicated a lack of industry standards and test procedures. This study included a commercial test system and several laboratory systems. Most systems are based on the heat flow meter method, and some are based on the Harman method. They are usually reproducible in evaluating thermoelectric modules. However, different systems often showed large differences that are likely caused by uncertain heat loss and thermal resistance. Efficiency testing is an important capability for the thermoelectric community to improve. A follow-up international standardization effort is planned.  相似文献   

8.
This paper presents the design, modeling, fabrication, and evaluation of thermoelectric generators (TEGs) with p-type polysilicon deposited by hot-wire chemical vapor deposition (HWCVD) as thermoelement material. A thermal model is developed based on energy balance and heat transfer equations using lumped thermal conductances. Several test structures were fabricated to allow characterization of the boron-doped polysilicon material deposited by HWCVD. The film was found to be electrically active without any post-deposition annealing. Based on the tests performed on the test structures, it is determined that the Seebeck coefficient, thermal conductivity, and electrical resistivity of the HWCVD polysilicon are 113 μV/K, 126 W/mK, and 3.58 × 10?5 Ω m, respectively. Results from laser tests performed on the fabricated TEG are in good agreement with the thermal model. The temperature values derived from the thermal model are within 2.8% of the measured temperature values. For a 1-W laser input, an open-circuit voltage and output power of 247 mV and 347 nW, respectively, were generated. This translates to a temperature difference of 63°C across the thermoelements. This paper demonstrates that HWCVD, which is a cost-effective way of producing solar cells, can also be applied in the production of TEGs. By establishing that HWCVD polysilicon can be an effective thermoelectric material, further work on developing photovoltaic-thermoelectric (PV-TE) hybrid microsystems that are cost-effective and better performing can be explored.  相似文献   

9.
Metal halide perovskites (MHPs) have not only shown unique merits of ultralow thermal conductivity compared to traditional inorganic thermoelectric (TE) materials, but also featured superior Seebeck effect to organic semiconductors, thereby affording great prospect in TE field. However, their severely poor electrical conductivity significantly hinders TE applications, which results from the restrained doping efficiency due to the limited accommodation capability of heterogeneous dopants and the heavy compensation from interior defects in MHPs. Realizing high-effectiveness electrical doping in MHPs becomes imperative yet remains extremely challenging. This Minireview is therefore intended to sort out the diversified doping strategies and highlight their underlying impacts on both thermal and electrical transportation in MHPs. These strategies are systematically classified into bulk and surface/interface doping as dictated by where the dopants are implemented while unravelling how they critically impact TE properties in distinctive means. A rational guideline is hence derived to strengthen electrical doping towards desirable perovskite TEs.  相似文献   

10.
Polymer‐based composites are of high interest in the field of thermoelectric (TE) materials because of their properties: abundance, low thermal conductivity, and nontoxicity. In applications, like TE for wearable energy harvesting, where low operating temperatures are required, polymer composites demonstrate compatible with the targeted specifications. The main challenge is reaching high TE efficiency. Fillers and chemical treatments can be used to enhance TE performance of the polymer matrix. The combined application of vertically aligned carbon nanotubes forest (VA‐CNTF) is demonstrated as fillers and chemical post‐treatment to obtain high‐efficiency TE composites, by dispersing VA‐CNTF into a poly (3,4‐ethylenedioxythiophene) polystyrene sulfonate matrix. The VA‐CNTF keeps the functional properties even in flexible substrates. The morphology, structure, composition, and functional features of the composites are thoroughly investigated. A dramatic increase of power factor is observed at the lowest operating temperature difference ever reported. The highest Seebeck coefficient and electrical conductivity are 58.7 µV K?1 and 1131 S cm?1, respectively. The highest power factor after treatment is twice as high in untreated samples. The results demonstrate the potential for the combined application of VA‐CNTF and chemical post‐treatment, in boosting the TE properties of composite polymers toward the development of high efficiency, low‐temperature, flexible TEs.  相似文献   

11.
The unfavourable relationship between electrical and thermal conductivity limits the choice of solid-state materials for thermoelectric generators (TEG). Among ionic liquids (IOL), it appears that a large variety of thermoelectric (TE) materials with promising high Seebeck coefficients have potential for development. Furthermore, the novel solid-on-liquid deposition technology (SOLID) allows the encapsulation of liquid TE materials to create new, highly integrated TEG devices. Following this vision, this paper studies a large number of IOLs looking at TE-relevant parameters such as thermal and electrical conductivity, Seebeck coefficient and temperature-dependent viscosity. We show that positive and negative Seebeck coefficients can be obtained, depending on the molecular structure and the viscosity of the IOL. The properties of single-junction TEGs are presented in terms of IV characteristics correlated with the IOL properties. We prove that the limiting effect of conversion efficiency is the current density that can be extracted from a device rather than the Seebeck coefficient.  相似文献   

12.
A frequently employed approach for determination of the maximum thermoelectric figure of merit of a material involves a calculation of its maximum electrical power factor and the corresponding thermal conductivity. In this study, we show that the thermoelectric figure of merit determined using this approach is likely to be limited by the Lorenz factor. The maximum thermoelectric figure of merit is achieved at a different electrical conductivity. A simple way of estimating the optimal electrical conductivity for obtaining the maximum thermoelectric figure of merit is presented.  相似文献   

13.
Thermoelectric (TE) power generation technology, due to its several advantages, is becoming a noteworthy research direction. Many researchers conduct their performance analysis and optimization of TE devices and related applications based on the generalized thermoelectric energy balance equations. These generalized TE equations involve the internal irreversibility of Joule heating inside the thermoelectric device and heat leakage through the thermoelectric couple leg. However, it is assumed that the thermoelectric generator (TEG) is thermally isolated from the surroundings except for the heat flows at the cold and hot junctions. Since the thermoelectric generator is a multi-element device in practice, being composed of many fundamental TE couple legs, the effect of heat transfer between the TE couple leg and the ambient environment is not negligible. In this paper, based on basic theories of thermoelectric power generation and thermal science, detailed modeling of a thermoelectric generator taking account of the phenomenon of energy loss from the TE couple leg is reported. The revised generalized thermoelectric energy balance equations considering the effect of heat transfer between the TE couple leg and the ambient environment have been derived. Furthermore, characteristics of a multi-element thermoelectric generator with irreversibility have been investigated on the basis of the new derived TE equations. In the present investigation, second-law-based thermodynamic analysis (exergy analysis) has been applied to the irreversible heat transfer process in particular. It is found that the existence of the irreversible heat convection process causes a large loss of heat exergy in the TEG system, and using thermoelectric generators for low-grade waste heat recovery has promising potential. The results of irreversibility analysis, especially irreversible effects on generator system performance, based on the system model established in detail have guiding significance for the development and application of thermoelectric generators, particularly for the design and optimization of TE modules.  相似文献   

14.
Inspired by the high ZT value lately attained in Ar-protected ball-milled nanocrystalline p-BiSbTe bulk alloy, we report herein an investigation of the effects of ball-milling atmosphere on the thermoelectric (TE) properties of the traditional TE material (GeTe)85(AgSbTe2)15 (TAGS-85). TAGS-85 samples were prepared via a melting–quenching–annealing process, and then ball-milled in different atmospheres and subsequently densified using a spark plasma sintering technique. The Seebeck coefficient, electrical conductivity, thermal conductivity, and Hall coefficient were measured as a function of temperature from 10 K to 310 K. It was found that different ball-milling atmospheres, i.e., air, liquid N2 (LN2), and Ar, profoundly affected the TE properties. A state-of-the-art figure of merit ZT ≈ 0.30 was attained at 310 K in the Ar-ball milled sample. The results are discussed in terms of the carrier concentration, mobility, crystallinity, and the grain boundary scattering.  相似文献   

15.
温差电材料热导率的激光脉冲测试法   总被引:2,自引:0,他引:2  
Wil.  SGK 高敏 《红外技术》1993,15(6):9-14
简要地介绍了热导率激光脉冲法的测量原理和实际装置,着重对该方法在半导体温差电材料热导率测试中的问题和解决途径进行了详细的讨论。  相似文献   

16.
Graded and segmented thermoelectric elements have been studied for a long time with the aim of improving the performance of thermogenerators that are exposed to a large temperature difference. However, it has been shown that simply adjusting the maximum figure of merit ZT in each segment of a stacked or graded thermoelectric (TE) element is not a sufficient strategy to maximize thermoelectric device performance. Global optimization of a performance parameter is commonly based on a one-dimensional continua-theoretical model. Following the proposal by Müller and coworkers, the temperature profile T(x) can be calculated within a model-free setup directly from the one-dimensional (1D) thermal energy balance, e.g., based on continuous monotonic gradient functions for all material profiles, and independent and free variability of the material parameters S(x), σ(x), and κ(x) is assumed primarily, where S is the Seebeck coefficient, and σ and κ are the electrical and thermal conductivities, respectively. Thus the optimum current density can be determined from the maximum of the global performance parameter. This has been done up to now by means of numerical procedures using a 1D thermoelectric (TE) finite-element method (FEM) code or the algorithm of multisegmented elements. Herein, an analytical solution of the 1D thermal energy balance has been found for constant gradients, based on Bessel functions. For a constant electrical conductivity but linear profiles S(x) and κ(x), first results for the electrical power output of a thermogenerator are presented.  相似文献   

17.
A new technique to measure the thermal conductivity of thermoelectric materials at the microscale has been developed. The structure allows the electrical conductivity, thermal conductivity, and Seebeck coefficient to be measured on a single device. The thermal conductivity is particularly difficult to measure since it requires precise estimation of the heat flux injected into the material. The new technique is based on a differential method where the parasitic contributions of the supporting beams of a Hall bar are removed. The thermal measurements with integrated platinum thermometers on the device are cross-checked using thermal atomic force microscopy and validated by finite-element analysis simulations.  相似文献   

18.
A theoretical model is proposed to predict the Seebeck coefficient and the electrical conductivity for a polycrystalline thermoelectric (TE) thin film under an external magnetic field. The model considers the distribution of electrons in the microstructure of TE thin-film materials, taking the scattering effect of electrons at the grain boundary as the boundary condition for electron transport in the grain. The transmission coefficient is introduced to describe the probability of electrons passing through the grain boundary potential barrier, while the relationships between the Seebeck coefficient, the electrical conductivity, and the transmission coefficient are studied. Furthermore, the results from the calculations of the Seebeck coefficient, the electric conductivity, and the power factor of TE materials under various applied magnetic fields, transmission coefficients, and grain sizes indicate that the applied external magnetic field has a very significant influence on the TE properties of polycrystalline thin films.  相似文献   

19.
Organic thin films have been viewed as potential thermoelectric (TE) materials, given their ease of fabrication, flexibility, cost effectiveness, and low thermal conductivity. However, their intrinsically low electrical conductivity is a main drawback which results in a relatively lower TE figure of merit for polymer-based TE materials than for inorganic materials. In this paper, a technique to enhance the ion transport properties of polymers through the introduction of ionic liquids is presented. The polymer is in the form of a nanofiber scaffold produced using the electrospinning technique. These fibers were then soaked in different ionic liquids based on substituted imidazolium such as 1-ethyl-3-methylimidazolium chloride or 1-butyl-3-methylimidazolium bromide. This method was applied to electrospun polyacrylonitrile and a mixture of polyvinyl alcohol and chitosan polymers. The ion transport properties of the membranes have been observed to increase with increasing concentration of ionic liquid, with maximum electrical conductivity of 1.20 × 10?1 S/cm measured at room temperature. Interestingly, the maximum electrical conductivity value surpassed the value of pure ionic liquids. These results indicate that it is possible to significantly improve the electrical conductivity of a polymer membrane through a simple and cost-effective method. This may in turn boost the TE figures of merit of polymer materials, which are well known to be considerably lower than those of inorganic materials. Results in terms of the Seebeck coefficient of the membranes are also presented in this paper to provide an overall representation of the TE potential of the polymer-scaffolded ionic liquid membranes.  相似文献   

20.
Various parameters affecting the performance of bulk thermoelectric (TE) modules used for integrated circuit (IC) thermal management are studied. An effective circuit model is developed that takes into account various ideal and nonideal effects in the module. It is shown that there is an optimum module thickness and an optimum operating current which depend on the overall heat dissipation and on the external thermal resistances. Optimized TE modules with ZT~0.8, will have a cross section over leg length ratio of 0.037m, can increase the chip operation power by 15% in comparison with the case without a TE cooler while maintaining the chip temperature below 100degC. This is for a package thermal resistance of 0.2K/W. Prospects for TE material with higher ZT values and the effect of contact resistance on the power dissipation density are also discussed. The results presented in this paper can be used in applications other than in the IC thermal management when external thermal resistances dominate the performance of TE modules  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号