首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perovskite-type La0.8Ca0.2CrO3 complex oxides were synthesized by a combustion method. Microstructural evolution, electrical properties, and thermal expansion behavior of the ceramics were investigated in the sintering temperature range of 1250°C to 1450°C. It was found that the electrical conductivity (σ e) remarkably improved with increasing sintering temperature from 1250°C to 1400°C, ascribed to the development of microstructural densification, whereas it declined slightly above 1400°C due to generation of excessive liquid. The specimen sintered at 1400°C had a maximum conductivity of 31.6 S cm?1 at 800°C, and lowest activation energy of 0.148 eV. The improvement of the thermal expansion coefficient (TEC) with increasing sintering temperature was monotonic as a result of the microstructural densification of the materials. The TEC of La0.8Ca0.2CrO3 sintered at 1400°C was about 10.5 × 10?6 K?1, being consistent with other components as high-temperature conductors. With respect to microstructure, electrical properties, and thermal expansion, the preferable sintering temperature was ascertained to be about 1400°C, which is much lower than for the traditional solid-state reaction method.  相似文献   

2.
The effects of CuO addition on phase composition, microstructure, sintering behavior, and microwave dielectric properties of 0.80Sm(Mg0.5Ti0.5)O3-0.20 Ca0.8Sr0.2TiO3(8SMT-2CST) ceramics prepared by a conventional solid-state ceramic route have been studied. CuO addition shows no obvious influence on the phase of the 8SMT-2CST ceramics and all the samples exhibit pure perovskite structure. Appropriate CuO addition can effectively promote sintering and grain growth, and consequently improve the dielectric properties of the ceramics. The sintering temperature of the ceramics decreases by 50°C by adding 1.00 wt.%CuO. Superior microwave dielectric properties with a ε r of 29.8, Q × f of 85,500 GHz, and τ f of 2.4 ppm/°C are obtained for 1.00 wt.%CuO doped 8SMT-2CST ceramics sintered at 1500°C, which shows dense and uniform microstructure as well as well-developed grain growth.  相似文献   

3.
(1 ? x)BaTiO3xBi(Cu0.75W0.25)O3 [(1 ? x)BT–xBCW, 0 ≤ x ≤ 0.04] perovskite solid solutions ceramics of an X8R-type multilayer ceramic capacitor with a low sintering temperature (900°C) were synthesized by a conventional solid state reaction technique. Raman spectra and x-ray diffraction analysis demonstrated that a systematically structural evolution from a tetragonal phase to a pseudo-cubic phase appeared near 0.03 < x < 0.04. X-ray photoelectron analysis confirmed the existence of Cu+/Cu2+ mixed-valent structure in 0.96BT–0.04BCW ceramics. 0.96BT–0.04BCW ceramics sintered at 900°C showed excellent temperature stability of permittivity (Δε/ε 25°C ≤ ±15%) and retained good dielectric properties (relative permittivity ~1450 and dielectric loss ≤2%) over a wide temperature range from 25°C to 150°C at 1 MHz. Especially, 0.96BT–0.04BCW dielectrics have good compatibility with silver powders. Dielectric properties and electrode compatibility suggest that the developed materials can be used in low temperature co-fired multilayer capacitor applications.  相似文献   

4.
采用微波加热法于1 100℃保温30 min(升温速率为20℃/min)合成Ba6-3xNd8+2xTi18O54(x=0.30~0.75,BNT)陶瓷粉末,再添加质量分数45%的B2O3-SiO2-CaO-MgO( BM)玻璃,在马弗炉中于900℃烧结2h制得BNT陶瓷.研究了所制陶瓷的微观结构及性能.结果表明:微波...  相似文献   

5.
Microwave dielectric ceramics based on geikielite-type MgTiO3 were prepared by an aqueous sol–gel process. The precursor powders and dielectric ceramics were characterized by x-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and microwave methods. Highly reactive nanosized magnesium titanate powders with particle sizes of 20 nm to 40 nm were successfully obtained at 500°C as precursors. Sintering characteristics and microwave dielectric properties of MgTiO3 ceramics were studied as a function of sintering temperature from 1100°C to 1300°C. With increasing sintering temperature, the density, ε r, and Qf values increased, saturating at 1200°C with excellent microwave properties of ε r = 17.5, Qf = 156,300 GHz, and τ f  = ?44 ppm/°C. Correlations between the microstructure and dielectric properties of MgTiO3 ceramics were also investigated.  相似文献   

6.
Phase-pure multiferroic BiFeO3 (BFO) was prepared by the coprecipitation technique using diverse precursors bismuth oxide at temperature as low as 400°C. The dependence of structural, microstructural, thermal, electrical (AC and DC), and magnetic properties on sintering temperature was systematically investigated. Uniaxially pressed samples (Ø8 mm) were sintered in air at 500°C to 800°C for 4 h. X-ray diffraction analysis was used to determine the amorphous and perovskite nature of as-synthesized and calcined/sintered samples, respectively. The crystallite size of sintered powders increased from 47 nm to 67 nm. Scanning electron microscopy showed grain growth during sintering, which improved intergranular connectivity and decreased porosity in the samples. The ferroelectric to paraelectric Curie transition temperature (T C) of pure BFO powder was detected by differential scanning calorimetry analysis and found to be 820°C ± 1°C. The samples exhibited high AC resistivity and dielectric constant, and low loss tangent values. The samples exhibited weak ferromagnetic behavior with an unsaturated magnetization versus magnetic field hysteresis loop at room temperature. Ferroelectric behavior and variation in remnant polarization and coercivity were observed from polarization versus electric field loops. Enhanced capacitance in the magnetic field revealed the magnetoelectric effect in the samples.  相似文献   

7.
A BiCu2PO6 microwave dielectric ceramic was prepared using a solid-state reaction method. As the sintering temperature increased from 800°C to 880°C, the bulk density of BiCu2PO6 ceramic increased from 6.299 g/cm3 to 6.366 g/cm3; the optimal temperature was 860°C. The best microwave dielectric properties [permittivity (? r ) = ~16, a quality factor (Q × f) = ~39,110 GHz and a temperature coefficient of resonant frequency (τ f ) = ~?59 ppm/°C] were obtained in the ceramic sintered at 860°C for 2 h. Then, TiO2 with a positive τ f (~+400 ppm/°C) was added to compensate the τ f value. The composite material was found to have a near-zero τ f (+2.7 ppm/°C) and desirable microwave properties (? r  = 19.9, Q × f = 24,885 GHz) when synthesized at a sintering temperature of 880°C. This system could potentially be used for low-temperature co-fired ceramics technology applications.  相似文献   

8.
The influences of Bi2O3 addition on the sintering behavior and microwave dielectric properties of ZnO-TiO2 ceramics were investigated. ZnO-TiO2 ceramics were prepared with conventional solid-state method and sintered at temperatures from 950°C to 1,100°C. The sintering temperature of ZnO-TiO2 ceramics with Bi2O3 addition could be effectively reduced to 1,000°C due to the liquidphase effects resulting from the additives. A proper amount of Bi2O3 addition could effectively improve the densification and dielectric properties of ZnO-TiO2 ceramics. The temperature coefficient of resonant frequency could be controlled by varying the sintering temperature and lead to a zero τf value. At 1,000°C, 1ZnO-1TiO2 ceramics with 1 wt.% addition gave better microwave dielectric properties ɛr of 29.3, a Q × f value of 22,000 GHz at 8.36 GHz, and a τf value of +17.4 ppm/ °C.  相似文献   

9.
Sintered nanoscale silver is a promising interconnection material for semiconductor devices because it provides improved joint properties compared with solder and wire bonds. It has higher electrical and thermal conductivity and is capable of higher operating temperature. Joints with die shear strength above 20 MPa can be formed at around 250°C even without applied pressure. Sintered silver joints were also found to be an order of magnitude more reliable than solder joints and wire bonds. In this work, the electromigration behavior of sintered nanosilver material under conditions of high applied current density and elevated temperature was investigated. Thin strips of sintered nanosilver formed on ceramic substrates were tested under current densities exceeding 150 kA/cm2 at temperatures of 150°C and above. Results based on the percentage change in sample resistance showed that the sintered silver lasted at least ten times longer than aluminum wire bonds. Examination of failed strips revealed that hairline cracks formed during sintering were the main cause of failure. Otherwise, defect-free samples exhibited a 10-fold increase in lifetime over wire bonds under similar conditions.  相似文献   

10.
MnO2-modified Ba(Ti0.9625Zr0.0375)O3 ceramics have been prepared by the conventional solid-state reaction technique at different sintering temperatures. Room-temperature piezoelectric properties, thermal stability, and crystalline structures were investigated. It was found that both the MnO2 additive and sintering temperature significantly influence the piezoelectric properties of the MnO2-modified Ba(Ti0.9625Zr0.0375)O3 ceramics. The sample sintered at 1400°C exhibited the best room-temperature piezoelectric properties of Q m = 1907, d 33 = 205 pC/N, and k p = 40.5% with tan δ = 0.46%, and its k p remains larger than 35% in the broad temperature range from ?38°C to 65°C. The results indicate that MnO2-modified Ba(Ti0.9625Zr0.0375)O3 ceramics are promising lead-free materials for frequency device and power device applications.  相似文献   

11.
利用固相合成法,以未掺杂的熔融石英砂为基础原料,通过快速升温、短时保温的烧结工艺制备出了具有极低介电常数的熔融石英陶瓷材料。研究了不同烧结温度对材料的烧结特性及介电性能的影响。结果表明:在1 150℃烧结1 h制得的材料,具有较好的性能,其最大相对密度为99%,εr=3.4,tanδ=6.86×10–4(1 MHz),Q.f=12 000 GHz(10 GHz)。  相似文献   

12.
AlF3-MgF2-SiO2系低温共烧氧氟玻璃陶瓷性能研究   总被引:1,自引:1,他引:0  
制备了AlF3-MgF2-SiO2系低温共烧氧氟玻璃陶瓷材料,用XRD、SEM和阻抗分析仪等分析其烧结特性、显微结构、介电性能以及与Ag电极浆料共烧等性能。结果表明:该材料可以在900℃烧结致密化,烧成后的样品具有低的介电常数(6.2)和介质损耗(<0.002)、较低的热膨胀系数(7.4×10–6/K)、较高的弯曲强度(220 MPa)和热导率[2.4 W/(m.K)],能够与Ag电极浆料共烧,是一种很有应用前景的低温共烧陶瓷基板和无源集成介质材料。  相似文献   

13.
The higher manganese silicides (HMS), represented by MnSi x (x = 1.71 to 1.75), are promising p-type leg candidates for thermoelectric energy harvesting systems in the middle-high temperature range. They are very attractive as they could replace lead-based compounds due to their nontoxicity, low-cost starting materials, and high thermal and chemical stability. Dense pellets were obtained through direct reaction between Mn and Si powders during the spark plasma sintering process. The tetragonal HMS and cubic MnSi phase amounts and the functional properties of the material such as the Seebeck coefficient and electrical and thermal conductivity were evaluated as a function of the SPS processing conditions. The morphology, composition, and crystal structure of the samples were characterized by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray diffraction analyses, respectively. Differential scanning calorimetry and thermogravimetric analysis were performed to evaluate the thermal stability of the final sintered material. A ZT value of 0.34 was obtained at 600°C for the sample sintered at 900°C and 90 MPa with 5 min holding time.  相似文献   

14.
Lead-free piezoelectric ceramics {0.996[(0.95(K0.5Na0.5)NbO3-0.05LiSbO3]-0.004BiFeO3}-xmol%ZnO were prepared through a conventional ceramics sintering technique. The effect of ZnO content on structure, microstructure, and piezoelectric properties of KNN-LS-BF ceramics was investigated. The results reveal that ZnO as a sintering aid is very effective in promoting sinterability and electrical properties of the ceramics sintered at a low temperature of 1,020 °C. The ceramics show a single-perovskite structure with predominant tetragonal phase, and coexistence of orthorhombic and tetragonal phases is observed for x = 2.5–3.0. The addition of ZnO causes abnormal grain growth. A dense microstructure is also obtained at x = 2.0 because the relative density reaches up to 94.6 %. The morphotropic phase boundary and dense microstructure lead to significant enhancement of the piezoelectric properties. The ceramic with x = 1.5 exhibits optimum electrical properties as follows: d 33 = 280 pC/N, k p = 46 %, Q m = 40.8, P r = 25 μC/cm2, E c = 1.2 kV/mm, and T c = 340 °C.  相似文献   

15.
V2O5-doped Na0.5K0.5NbO3-LiSbO3-BiFeO3 (KNN-LS-BF) lead-free piezoelectric ceramics were prepared by the traditional sintering method, and their temperature stability was studied. Characterization of the temperature dependences of dielectric and piezoelectric properties of the V2O5-doped KNN-LS-BF ceramics showed that V2O5 doping could significantly improve the temperature stability in the temperature range of 30°C to 420°C and cause a downward shift in the orthorhombic–tetragonal phase transition to below room temperature. It was also found that the V2O5-doped KNN-LS-BF ceramics possess good dielectric and piezoelectric properties (ε r > 1066, tan δ < 4%, d 33 > 185 pC/N, k p > 0.25) in the temperature range of 30°C to 300°C.  相似文献   

16.
以低相对介电常数的硼硅酸盐玻璃粉末和氧化硅粉末为原料,制备了玻璃–氧化硅复合材料。研究了烧结温度和氧化硅含量对复合材料的电学性能和力学性能的影响。结果表明,当氧化硅质量分数为45%时,玻璃–氧化硅复合材料经840℃、2h的烧结后,其εr为3.8,tanδ为4×10–4,ρv为9.8×1011?·cm,抗弯强度σ为30MPa。另外,该复合材料在100~500℃之间的热膨胀系数为(8.0~10.0)×10–6℃–1。  相似文献   

17.
In this paper, we present and discuss experimental results from a microwave sintering of a silica-glass ceramic, produced from a silica xerogel extracted from a sago waste ash. As a radiation source for the microwave heating a sub-millimeter wave gyrotron (Gyrotron FU CW I) with an output frequency of 300 GHz has been used. The powders of silica xerogel have been dry pressed and then sintered at temperatures ranging from 300°C to 1500°C. The influence of the sintering temperature on the technological properties such as porosity and bulk density was studied in detail. Furthermore, X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy have been used in order to study the structure of the produced silica glass-ceramics. It has been found that the silica xerogel crystallizes at a temperature of 800°C, which is about 200°C lower than the one observed in the conventional process. The silica xerogel samples sintered by their irradiation with a sub-millimeter wave at 900°C for 18 minutes are fully crystallized into a silica glass-ceramic with a density of about 2.2 g/cm3 and cristobalite as a major crystalline phase. The results obtained in this study allow one to conclude that the microwave sintering with sub-millimeter waves is an appropriate technological process for production of silica glass-ceramics from a silica xerogel and is characterized with such advantages as shorter times of the thermal cycle, lower sintering temperatures and higher quality of the final product.  相似文献   

18.
0.997(KNN-LS-BF)-0.003V2O5 lead-free piezoelectric ceramics were prepared by a traditional sintering method. The effects of sintering temperature on the structure and properties of the 0.997(KNN-LS-BF)-0.003V2O5 ceramics were studied. The results show that the sintering temperature exerts a distinct influence on the phase structure and properties. With the increase in sintering temperature from 1040°C to 1060°C, the main crystallographic phase changes from the orthorhombic symmetry to the tetragonal phase, and the optimum dielectric and piezoelectric properties of samples can be obtained when sintering at 1060°C. However, the dielectric and piezoelectric properties of the samples deteriorate when the sintering temperature exceeds 1060°C.  相似文献   

19.
An ultralow-firing microwave dielectric ceramic Cu3Mo2O9 with orthorhombic structure has been fabricated via a solid-state reaction method. X-ray diffraction analysis, Rietveld refinement, Raman spectroscopy, energy-dispersive spectrometry, and scanning electron microscopy were employed to explore the phase purity, crystal structure, and microstructure. Pure and dense Cu3Mo2O9 ceramics could be obtained in the sintering temperature range from 580°C to 680°C. The sample sintered at 660°C for 4 h exhibited the highest relative density (~ 97.2%) and best microwave dielectric properties with ε r = 7.2, Q × f = 19,300 GHz, and τ f = ? 7.8 ppm/°C. Chemical compatibility with aluminum electrodes was also confirmed. All the results suggest that Cu3Mo2O9 ceramic is a promising candidate for use in ultralow-temperature cofired ceramic applications.  相似文献   

20.
Li2O-B2O3-SiO2 (LBS) synthesized via a solid-state reaction process was chosen as a novel sintering aid for tungsten-bronze-type Ba4Nd9.3Ti18O54 (BNT) ceramic. The effects of LBS additions on the sintering behaviors, microstructures, and microwave dielectric properties of the BNT ceramic have been investigated, indicating that LBS addition obviously lowered the sintering temperature of the BNT ceramic without damaging its microwave dielectric properties. BNT ceramic doped with 3 wt.% and 4 wt.% LBS addition could be well sintered at 975°C and 950°C for 3 h and had excellent properties: ε r = 65.99, Q × f = 4943 GHz (f = 4.4 GHz), τ f = 19 ppm/°C, and ε r = 64.56, Q × f = 4929 GHz (f = 4.3 GHz), τ f = 11 ppm/°C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号