首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For fine grain task graphs, duplication-based scheduling algorithms are generally more efficient than list and cluster-based algorithms. However, most duplication-based heuristics try to duplicate all possible ancestor nodes of a given join node, in order to reduce the earliest start time (EST) of the join node, even though these ancestor nodes have already been allocated in previous steps. Thus, these duplication heuristics inevitably induce redundant duplications, which lead to the superfluous consumption of resources and generally deteriorate the scheduling result in the case of a bounded number of processors. When scheduling algorithms are used on an unbounded number of processors, the required number of processors grows excessively with the size of the task graph, thereby limiting the practicality of these algorithms for large task graphs. In this paper, we propose a novel algorithm designed to allocate join nodes without redundant duplications. In the proposed algorithm, if the ancestor nodes of a join node are duplicated when scheduling the join node, the original allocations of these ancestor nodes are removed using a very efficient method. The performance of the proposed algorithm, in terms of its normalized schedule length and efficiency, is compared with that of some of the recently proposed algorithms. The proposed algorithm generates better or comparable schedules with minimized duplication. Specifically, the simulation results show that it is most useful on a bounded number of processors.  相似文献   

2.
一种面向同构集群系统的并行任务节能调度优化方法   总被引:1,自引:0,他引:1  
节能调度算法设计是高性能计算领域中的一个研究热点.复制调度算法能够减少后继任务等待延时,缩短任务总体调度时间,但是耗费了更多的能量.为此,作者提出一种启发式处理器合并优化方法 PRO.该方法按照任务最早开始时间和最早结束时间查找处理器时间空隙,将轻负载处理器上的任务重新分配到其它处理器上,从而减少使用的处理器数目,降低系统总体能耗.实验结果表明,和已有的复制任务调度算法TDS、EAD和PEBD相比,优化后的调度算法在不增加调度时间的条件下,能够明显减少使用的处理器数和系统总体能耗,从而更好地实现性能和能耗之间的平衡.  相似文献   

3.
针对异构集群下高效节能的任务调度算法进行了研究, 提出了一种基于复制的任务调度算法, 在任务初始分配的基础上, 分别从能源感知和性能—能源平衡两个角度考虑任务的复制。建立了由计算和通信造成的能源消耗的数学模型, 并进行了大量的实验。实验结果表明, 与已有的BEATA算法相比, 该算法能明显地减少异构集群处理并行应用的调度长度和能耗。分析结果发现, 任务复制的方法在减少调度长度的同时会增加相应的能耗, 能同比优化调度长度和能耗的任务调度方法是今后的研究方向。  相似文献   

4.
As the scale and complexity of heterogeneous computing systems grow, failures occur frequently and have an adverse effect on solving large-scale applications. Hence, fault-tolerant scheduling is an imperative step for large-scale computing systems. The existing fault-tolerant scheduling algorithms belong to static scheduling, and they allocate multiple copies of each task to several processors no matter whether processor failures affect the execution of tasks. Such active replication strategies not only waste resource but also sacrifice the makespan. What is more, they cannot guarantee the successful execution of applications. In this paper, we propose a fault-tolerant dynamic rescheduling algorithm named FTDR, which can overcome above drawbacks. FTDR keeps listening to the processor failure, and reschedules the suspended tasks once failures occur. Because FTDR reschedules the tasks that are suspended because of failures, it can tolerate an arbitrary number of failures. Randomly generated DAGs are tested in our experiments. Experimental results show that the proposed algorithm achieves good performance in terms of makespan and resource consumption compared with its direct competitors.  相似文献   

5.
One of the major design constraints of a heterogeneous computing system is optimal scheduling, that is, mapping of tasks on the processing nodes in order to optimize the QoS parameters. Because of the huge energy consumption by computing resources, negative environmental effects and reduced system reliability, energy has unavoidably been added as a new parameter to the list of QoS parameters. Energy optimization in scheduling strategies along with makespan makes it an even more challenging combinatorial optimization problem. This work proposes two energy‐aware scheduling algorithms G1 and G2 to schedule a batch‐of‐tasks, made of a collection of independent tasks, on heterogeneous processors in order to minimize the makespan and the energy consumption. The proposed algorithms schedule tasks based on weighted aggregation cost function to the appropriate processors followed by task migration phase designed to further minimize the makespan and the energy consumption. The study evaluates the performance of the proposed algorithms with some of the peers, that is, MinMin, MINSuff on account of makespan, energy consumption, flowtime, and utilization. An experimental study reveals that the proposed algorithm (G2) consistently performs better under various test conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
兰舟  孙世新 《计算机学报》2007,30(3):454-462
多处理器调度问题是影响系统性能的关键问题,基于任务复制的调度算法是解决多处理器调度问题较为有效的方法.文中分析了几个典型的基于任务复制算法,提出了基于动态关键任务(DCT)的多处理器任务分配算法.DCT算法以克服贪心算法不足为要点,调度过程中动态计算任务时间参数,准确确定处理器的关键任务,以关键任务为核心优化调度,逐步改善调度结果,最终取得最优的调度结果.分析和实验证明,DCT算法优于现有其它同类算法.  相似文献   

7.
Many DAG scheduling algorithms generate schedules that require prohibitively large number of processors. To address this problem, we propose a generic algorithm, SC, to minimize the processor requirement of any given valid schedule. SC preserves the schedule length of the original schedule and reduces processor count by merging processor schedules and removing redundant duplicate tasks. To the best of our knowledge, this is the first algorithm to address this highly unexplored aspect of DAG scheduling. On average, SC reduced the processor requirement 91, 82, and 72 percent for schedules generated by PLW, TCSD, and CPFD algorithms, respectively. SC algorithm has a low complexity (O{N}3) compared to most duplication-based algorithms. Moreover, it decouples processor economization from schedule length minimization problem. To take advantage of these features of SC, we also propose a scheduling algorithm SDS, having the same time complexity as SC. Our experiments demonstrate that schedules generated by SDS are only 3 percent longer than CPFD (O{N}4), one of the best algorithms in that respect. SDS and SC together form a two-stage scheduling algorithm that produces schedules with high quality and low processor requirement, and has lower complexity than the comparable algorithms that produce similar high-quality results.  相似文献   

8.

Cloud computing infrastructures have intended to provide computing services to end-users through the internet in a pay-per-use model. The extensive deployment of the Cloud and continuous increment in the capacity and utilization of data centers (DC) leads to massive power consumption. This intensifying scale of DCs has made energy consumption a critical concern. This paper emphasizes the task scheduling algorithm by formulating the system model to minimize the makespan and energy consumption incurred in a data center. Also, an energy-aware task scheduling in the Blockchain-based data center was proposed to offer an optimal solution that minimizes makespan and energy consumption. The established model was analyzed with a target-time responsive precedence scheduling algorithm. The observations were analyzed and compared with the traditional scheduling algorithms. The outcomes exhibited that the developed solution incurs better performance with a response to resource utilization and decreasing energy consumption. The investigation revealed that the applied strategy considerably enhanced the effectiveness of the designed schedule.

  相似文献   

9.
任务调度问题是并行分布式计算中的挑战性问题之一。大多数实际的调度算法是启发式的因而常常具有改进的余地。针对Out-Tree任务图这一基本结构提出一个基于任务复制的启发式调度算法,该算法在确保最短调度长度的同时,注重处理器的负载平衡,以达到节约处理器的目的。比较性实验的结果表明,该算法确保了最短调度长度且使用的处理器最少。因而,该算法提高了系统的利用率,避免消耗过多的资源,实际应用性更好。  相似文献   

10.
李开言  王亚刚  张涛 《信息与控制》2022,51(4):489-497+512
针对边缘计算在离散制造业数据处理过程中存在的时延和资源消耗大的问题,提出了一种基于改进灰狼优化(IGWO)算法的边缘计算任务调度方法。该方法通过对非线性收敛因子以及动态权重的改进,提高了灰狼算法的优化速度和精度,有效降低了终端设备和边缘端的资源损耗以及任务处理的时延。基于不同数据任务量下的处理时延与资源消耗实验,证明了所提模型的有效性,与3种主流任务调度算法相比,数据处理资源消耗和时延最低。将边缘计算任务调度与智能寻优算法相结合并运用到离散制造业,可以提高设备任务的处理速度、降低能耗,为离散制造业智能化转型提供借鉴。  相似文献   

11.
网格中资源之间存在着通信延迟,通过任务复制的冗余,可以减少任务之间的通信开销,缩短整个计算程序的计算时间。目前网格中的任务调度算法基本上是没有考虑任务复制的;而基于任务复制调度算法往往会产生过多的复制任务,增大系统开销,甚至有可能延迟计算时间。由于基于任务复制的任务调度是一个NP问题,因此本文提出了一种基于任务复制的网格资源调度算法,以减少调度长度为主要目标、减少任务复制量和资源占用量为次要目标。该算法在调度长度和任务复制数量以及占用资源数量方面都等于或优于其它算法。  相似文献   

12.
提出一种基于树型计算网格的自适应调度算法,实现对小粒度独立任务和用户大作业的自适应最优调度。通过对网格环境的实时检测,给出了基于节点负载状况、节点任务执行时间、任务传输时间和任务特性的自适应调度算法,即基于最优任务分配方案的启发式任务调度算法。通过实验与其他调度算法的比较,证明了所提出的任务调度算法在负载平衡和最优跨度方面具有明显的优越性。  相似文献   

13.
Optimal task allocation in Large-Scale Computing Systems (LSCSs) that endeavors to balance the load across limited computing resources is considered an NP-hard problem. MinMin algorithm is one of the most widely used heuristic for scheduling tasks on limited computing resources. The MinMin minimizes makespan compared to other algorithms, such as Heterogeneous Earliest Finish Time (HEFT), duplication based algorithms, and clustering algorithms. However, MinMin results in unbalanced utilization of resources especially when majority of tasks have lower computational requirements. In this work we consider a computational model where each machine has certain bounded capacity to execute a predefined number of tasks simultaneously. Based on aforementioned model, a task scheduling heuristic Extended High to Low Load (ExH2LL) is proposed that attempts to balance the workload across the available computing resources while improving the resource utilization and reducing the makespan. ExH2LL dynamically identifies task-to-machine assignment considering the existing load on all machines. We compare ExH2LL with MinMin, H2LL, Improved MinMin Task Scheduling (IMMTS), Load Balanced MaxMin (LBM), and M-Level Suffrage-Based Scheduling Algorithm (MSSA). Simulation results show that ExH2LL outperforms the compared heuristics with respect to makespan and resource utilization. Moreover, we formally model and verify the working of ExH2LL using High Level Petri Nets, Satisfiability Modulo Theories Library, and Z3 Solver.  相似文献   

14.
The task scheduling in heterogeneous distributed computing systems plays a crucial role in reducing the makespan and maximizing resource utilization. The diverse nature of the devices in heterogeneous distributed computing systems intensifies the complexity of scheduling the tasks. To overcome this problem, a new list-based static task scheduling algorithm namely Deadline-Aware-Longest-Path-of-all-Predecessors (DA-LPP) is being proposed in this article. In the prioritization phase of the DA-LPP algorithm, the path length of the current task from all its predecessors at each level is computed and among them, the longest path length value is assigned as the rank of the task. This strategy emphasizes the tasks in the critical path. This well-optimized prioritization phase leads to an observable minimization in the makespan of the applications. In the processor selection phase, the DA-LPP algorithm implements the improved insertion-based policy which effectively utilizes the unoccupied leftover free time slots of the processors which improve resource utilization, further least computation cost allocation approach is followed to minimize the overall computation cost of the processors and parental prioritization policy is incorporated to further reduce the scheduling length. To demonstrate the robustness of the proposed algorithm, a synthetic graph generator is used in this experiment to generate a huge variety of graphs. Apart from the synthetic graphs, real-world application graphs like Montage, LIGO, Cybershake, and Epigenomic are also considered to grade the performance of the DA-LPP algorithm. Experimental results of the DA-LPP algorithm show improvement in performance in terms of scheduling length ratio, makespan reduction rate , and resource reduction rate when compared with other algorithms like DQWS, DUCO, DCO and EPRD. The results reveal that for 1000 task set with deadline equals to two times of the critical path, the scheduling length ratio of the DA-LPP algorithm is better than DQWS by 35%, DUCO by 23%, DCO by 26 %, and EPRD by 17%.  相似文献   

15.
On exploiting task duplication in parallel program scheduling   总被引:1,自引:0,他引:1  
One of the main obstacles in obtaining high performance from message-passing multicomputer systems is the inevitable communication overhead which is incurred when tasks executing on different processors exchange data. Given a task graph, duplication-based scheduling can mitigate this overhead by allocating some of the tasks redundantly on more than one processor. In this paper, we focus on the problem of using duplication in static scheduling of task graphs on parallel and distributed systems. We discuss five previously proposed algorithms and examine their merits and demerits. We describe some of the essential principles for exploiting duplication in a more useful manner and, based on these principles, propose an algorithm which outperforms the previous algorithms. The proposed algorithm generates optimal solutions for a number of task graphs. The algorithm assumes an unbounded number of processors. For scheduling on a bounded number of processors, we propose a second algorithm which controls the degree of duplication according to the number of available processors. The proposed algorithms are analytically and experimentally evaluated and are also compared with the previous algorithms  相似文献   

16.
王小乐  黄宏斌  邓苏 《自动化学报》2012,38(11):1870-1879
针对异构环境并行计算的静态任务调度问题,以最小化有向无环图 (Directed acyclic graph, DAG)的执行跨度为目标,改变HEFT (Heterogeneous earliest finish time)算法中任务上行权重的计算方法, 获得更加合理的任务顺序排列,提出了一种最早完成时间优先的表调度算法IHEFT (Improvement heterogeneous earliest finish time).该算法在计算任务的上行权重时, 分别计算该任务分配给不同资源的上行权重,取其最小值,比使用所有资源对该任务的平均处理时间进行计算的HEFT算法更为准确. 确定任务的处理顺序后采用最早完成时间越小越优先的策略将任务分配给最优资源,并使得任务的开始执行时间和结束时间满足DAG中有向边的通讯时间约束.通过使用部分文献中的算例数据以及随机生成满足一定结构要求的DAG进行算法测试,将IHEFT与HEFT, CPOP (Critical-path-on-a-processor)和LDCP (Longest dynamic critical path)进行了比较,结果显示IHEFT算法更有效,而且时间复杂度较低.  相似文献   

17.
The developments of multi-core systems (MCS) have considerably improved the existing technologies in the field of computer architecture. The MCS comprises several processors that are heterogeneous for resource capacities, working environments, topologies, and so on. The existing multi-core technology unlocks additional research opportunities for energy minimization by the use of effective task scheduling. At the same time, the task scheduling process is yet to be explored in the multi-core systems. This paper presents a new hybrid genetic algorithm (GA) with a krill herd (KH) based energy-efficient scheduling technique for multi-core systems (GAKH-SMCS). The goal of the GAKH-SMCS technique is to derive scheduling tasks in such a way to achieve faster completion time and minimum energy dissipation. The GAKH-SMCS model involves a multi-objective fitness function using four parameters such as makespan, processor utilization, speedup, and energy consumption to schedule tasks proficiently. The performance of the GAKH-SMCS model has been validated against two datasets namely random dataset and benchmark dataset. The experimental outcome ensured the effectiveness of the GAKH-SMCS model interms of makespan, processor utilization, speedup, and energy consumption. The overall simulation results depicted that the presented GAKH-SMCS model achieves energy efficiency by optimal task scheduling process in MCS.  相似文献   

18.
由于任意的MapReduce作业都需要独立地进行任务调度、资源分配等一系列复杂的操作,这使得同一算法协同的多个MapReduce作业之间,存在着大量的冗余磁盘I/O及资源重复申请操作,导致计算过程中资源利用效率低下。大数据挖掘类算法通常被切分成多个MapReduce job协作完成。以ItemBased算法为例,对多MapReduce作业协同下的大数据挖掘算法存在的资源效率问题进行了分析,提出基于DistributedCache的ItemBased算法,利用DistributedCache将多个MapReduce job之间的I/O数据进行缓存处理,打破作业之间独立性的缺陷,减少map与reduce任务之间的等待时延。实验结果表明,DistributedCache能够提高MapReduce作业的数据读取速度,利用DistributedCache重构后的算法极大地减少了map与reduce任务之间的等待时延,资源效率提高3倍以上。  相似文献   

19.
网格任务调度是当前重要的研究领域。网格环境具有动态性、异构性等特点,网格资源的处理性能和稳定性都是影响到任务调度顺利完成的重要因素。为了获得更小的任务完成时间,该文根据网格环境的特点,建立了网格资源超图模型,在该模型基础上对资源按性能进行聚类,并提出一种可信任务调度算法GRHTS。模拟实验结果表明,该基于网格资源超图模型的可信任务调度算法优于同类算法,是一种有效的网格任务调度算法。  相似文献   

20.
Cloud resources provide a promising way to efficiently perform the needed simulation tasks for a complex manufacturing process. Most of the existing work focuses only on how to effectively schedule computing resources to execute computing requirements of simulation workflows in Internet of Things (IoT) applications. Research on the scheduling of simulation workflows in consideration of task ordering, service selection, and resource allocation altogether has not been lacking. To fill in this void, this paper proposes a cloud-based 3-stage workflow scheduling model. Before scheduling computing resources to complete task requirements, the order of the tasks is determined and the services that can meet the task requirements are selected. In this model, the workload to satisfy task requirements is not fixed and takes on a different value depending upon the service selected with its unique complexity and accuracy. An optimization function that transforms and integrates makespan, cost, and accuracy in a unique way is proposed. For its solution, the relatively new symbiotic organisms search (SOS) algorithm is modified and two SOS-based optimization strategies are developed, i.e., joint optimization-based SOS (JOSOS) and split optimization-based SOS (SOSOS). The simulation results reveal that SOS-based algorithms, especially the SOSOS method, outperform all compared algorithms. Based on the proposed method, simulation services and computing resources can be rationally selected and scheduled to ensure the requirements of IoT applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号