首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We report an enhancement of the thermoelectric figure of merit in polycrystalline In- and Ga-doped Bi0.4Sb1.6Te3 compounds. Via the controlled doping of In or Ga, the lattice thermal conductivity was effectively reduced by strong point-defect phonon scattering while the power factor was not significantly changed due to the similarity of the density of states near the valence-band maximum between undoped and In- or Ga-doped compositions. An enhanced ZT of 1.2 at 320 K was obtained in 0.5 at.% In-doped Bi0.4Sb1.6Te3 compound by these synergetic effects.  相似文献   

2.
We prepared a mixture of thermoelectric bismuth telluride particles, a conductive polymer [poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)], poly(acrylic acid) (PAA), and several organic additives to fabricate thermoelectric films using printing or coating techniques. In the mixture, the organic components (PEDOT:PSS, PAA, and an additive) act as a binder to connect bismuth telluride particles mechanically and electrically. Among the organic additives used, glycerol significantly enhanced the electrical conductivity and bismuth telluride particle dispersibility in the mixture. Bi0.4Te3.0Sb1.6 films fabricated by spin-coating the mixture showed a thermoelectric figure of merit (ZT) of 0.2 at 300 K when the Bi0.4Te3Sb1.6 particle diameter was 2.8 μm and its concentration in the elastic films was 95 wt.%.  相似文献   

3.
Cu0.003Bi0.4Sb1.6Te3 alloys were prepared by using encapsulated melting and hot extrusion (HE). The hot-extruded specimens had the relative average density of 98%. The (00l) planes were preferentially oriented parallel to the extrusion direction, but the specimens showed low crystallographic anisotropy with low orientation factors. The specimens were hot-extruded at 698 K, and they showed excellent mechanical properties with a Vickers hardness of 76 Hv and a bending strength of 59 MPa. However, as the HE temperature increased, the mechanical properties degraded due to grain growth. The hot-extruded specimens showed positive Seebeck coefficients, indicating that the specimens have p-type conduction. These specimens exhibited negative temperature dependences of electrical conductivity, and thus behaved as degenerate semiconductors. The Seebeck coefficient reached the maximum value at 373 K and then decreased with increasing temperature due to intrinsic conduction. Cu-doped specimens exhibited high power factors due to relatively higher electrical conductivities and Seebeck coefficients than those of undoped specimens. A thermal conductivity of 1.00 Wm?1 K?1 was obtained at 373 K for Cu0.003Bi0.4Sb1.6Te3 hot-extruded at 723 K. A maximum dimensionless figure of merit, ZT max = 1.05, and an average dimensionless figure of merit, ZT ave = 0.98, were achieved at 373 K.  相似文献   

4.
In the current study, novel hexagonal rods based on Bi0.4Sb1.6Te3 ingots dispersed with x amount of Se (x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) in the form Bi0.4Sb1.6Se3x Te3(1?x) were synthesized via a standard solid-state microwave route. The morphologies of these rods were explored using field-emission scanning electron microscopy (FESEM). The crystal structure of the powders was examined by x-ray diffraction (XRD) analysis, which showed that powders of the 0.0 ≤ x ≤ 0.8 samples could be indexed to the rhombohedral phase, whereas the sample with x = 1.0 had an orthorhombic phase structure. The influence of variations in the Se content on the thermoelectric properties was studied in the temperature range from 300 K to 523 K. Alloying of Se into Bi0.4Sb1.6Te3 effectively caused a decrease in the hole concentration and, thus, a decrease in the electrical conductivity and an increase in the Seebeck coefficient. The maximal power factor measured in the present work was 7.47 mW/mK2 at 373 K for the x = 0.8 sample.  相似文献   

5.
Ball milling with subsequent spark plasma sintering (SPS) was used to fabricate bulk nanothermoelectrics based on Bi x Sb2?x Te3. The SPS technique enables reduced size of grains in comparison with the hot-pressing method. The electrical and thermal conductivities, Seebeck coefficient, and thermoelectric figure of merit as functions of temperature and alloy composition were measured for different sintering temperatures. The greatest value of the figure of merit ZT = 1.25 was reached at the temperature of 90°C to 100°C in Bi0.4Sb1.6Te3 for sintering temperature of 450°C to 500°C. The volume and quantitative distributions of size of coherent dispersion areas (CDA) were calculated for different sintering temperatures. The phonon thermal conductivity of nanostructured Bi x Sb2?x Te3 was investigated theoretically taking into account phonon scattering on grain boundaries and nanoprecipitates.  相似文献   

6.
We produced six different composites of p-type bismuth antimony telluride alloys and studied their structure and thermoelectric properties. The components of the composites were obtained in powder form by mechanical alloying. Mixed powders of two different compositions were consolidated by hot extrusion to obtain each bulk composite. The minimum grain size of bulk composites as revealed by scanning electron microscopy shows a 50% reduction compared with the conventional (Bi0.2Sb0.8)2Te3. X-ray diffraction (XRD) analysis only shows peak broadening with no clear indication of separate phases, and indicates a systematic decrease of crystallite size in the composite materials. Scattering mechanisms of charge carriers were evaluated by Hall-effect measurements. The thermoelectric properties were investigated via the Harman method from 300 K up to 460 K. The composites show no significant degradation of the power factor and high peak ZT values ranging from 0.86 to 1.04. The thermal conductivity of the composites slightly increases with respect to the conventional alloy. This unexpected behavior can be attributed to two factors: (1) the composites do not yet contain a significant number of grains whose sizes are sufficiently small to increase phonon scattering, and (2) each of the combined components of the composites corresponds to a phase with thermal conductivity higher than the minimum value corresponding to the (Bi0.2Sb0.8)2Te3 alloy.  相似文献   

7.
This work focused on the preparation of p-type Bi0.4Sb1.6Te3 bulk materials by combining mechanical alloying (MA) and hot extrusion, with emphasis on grain refinement and preferred grain orientation. Pure Bi, Sb, and Te powders were mechanically alloyed then hot extruded in the temperature range 360–450°C. Bi0.4Sb1.6Te3 bulk materials were successfully prepared by MA and hot extrusion. All the samples had sound appearance, with single phases and high densities. The hot-extruded samples had small grain sizes, and the lower the extrusion temperature, the smaller the grain sizes. The results indicated that the extrudates had preferred orientation. The basal plane was predominantly oriented parallel to the direction of extrusion. Similar Seebeck coefficients were obtained when extrusion temperature was in the range 380–420°C. Electrical resistivity decreased with increasing extrusion temperature. Thermal conductivity was relatively low, even if the extrusion temperature was 450°C. As a result, a ZT value of 1.2 was obtained at room temperature for the sample extruded at 400°C. Therefore, combination of MA and hot extrusion results in significant improvement of both the thermoelectric and mechanical performance of Bi0.4Sb1.6Te3 bulk materials.  相似文献   

8.
We report fabrication of nanostructured Bi2?x Sb x Te3 using hydrothermal method followed by cold-pressing and evacuated-and-encapsulated sintering techniques. To obtain lower resistivity, the reaction temperature in the hydrothermal synthesis is investigated, and the effects on the ZT values of Bi2?x Sb x Te3 are reported. Both the x = 1.52 and 1.55 samples hydrothermally synthesized at 160°C show lower resistivity than the x = 1.55 sample hydrothermally synthesized at 140°C. However, the power factor is lower for the samples synthesized at 160°C due to the accompanying smaller thermopower. All three samples exhibit remarkably low thermal conductivity of around 0.41 W m?1 K?1 at room temperature. The peak ZT value occurs at 270 K for all three samples, being ZT = 1.75, 1.29, and 1.17 for x = 1.55 (synthesized at 140°C), 1.55 (synthesized at 160°C), and 1.52 (synthesized at 160°C), respectively.  相似文献   

9.
Introducing nanoinclusions in thermoelectric (TE) materials is expected to lower the lattice thermal conductivity by intensifying the phonon scattering effect, thus enhancing their TE figure of merit ZT. We report a novel method of fabricating Bi0.5Sb1.5Te3 nanocomposite with nanoscale metal particles by using metal acetate precursor, which is low cost and facile to scale up for mass production. Ag and Cu particles of ??40?nm were successfully near-monodispersed at grain boundaries of Bi0.5Sb1.5Te3 matrix. The well-dispersed metal nanoparticles reduce the lattice thermal conductivity extensively, while enhancing the power factor. Consequently, ZT was enhanced by more than 25% near room temperature and by more than 300% at 520?K compared with a Bi0.5Sb1.5Te3 reference sample. The peak ZT of 1.35 was achieved at 400?K for 0.1?wt.% Cu-decorated Bi0.5Sb1.5Te3.  相似文献   

10.
The p-type Bi0.4Sb1.6Te3 alloys are prepared using a new method of mechanical alloying followed by microwave-activated hot pressing (MAHP). The effect of sintering temperature on the microstructure and thermoelectric properties of Bi0.4Sb1.6Te3 alloys is investigated. Compared with other sintering techniques, the MAHP process can be used to produce relatively compact bulk materials at lower sintering temperatures owing to its unique sintering mechanism. The grain size of the MAHP specimens increases gradually with the sintering temperature and a partially oriented lamellar structure can be formed in some regions of specimens obtained. The formation of the in situ-generated nano-phase is induced by the arcing effect of the MAHP process, which enhances the phonon scattering effect and decreases the lattice thermal conductivity. A minimum lattice thermal conductivity of 0.41 W/(m·K) and a maximum figure of merit value of 1.04 are obtained at 100°C for the MAHP specimen sintered at 325°C. This technique may also be extended to other functional materials to obtain ultrafine microstructures at low sintering temperatures.  相似文献   

11.
Nanostructured bulk materials are regarded as a means of enhancing the performance of thermoelectric (TE) materials and devices. Powder metallurgy has the distinct advantage over conventional synthesis that it can start directly from nanosized particles. However, further processing, for example extrusion, usually requires elevated temperatures, which lead to grain growth. We have found that introduction of semiconductor nanoparticles of molybdenum disulfide (MoS2), a well-known solid lubricant, suppresses grain growth in bismuth telluride-based alloys, thus improving the extrusion process. Scanning electron microscope images show that adding MoS2 particles at concentrations of 0.2, 0.4, and 0.8 wt% to p-type (Bi0.2Sb0.8)2Te3, under otherwise identical extrusion conditions, reduces average grain size by a factor of four. Scherer’s formula applied to x-ray diffraction data indicates that average crystallite sizes (~17 nm) of powders are not significantly different from those of alloys extruded with MoS2 (~18 nm), which is in stark contrast with those for conventional alloy (Bi0.2Sb0.8)2Te3 extruded under the same conditions (~80 nm). Harman measurements of TE properties reveal a decrease of the thermal conductivity accompanied by reduction of the room-temperature figure of merit (ZT) from 0.9 to 0.7, because of a lower power factor. Above 370 K, however, the performance of alloys containing MoS2 surpasses that of (Bi0.2Sb0.8)2Te3, with reduction of the thermal conductivity which is more significant at temperatures above the cross point of the ZT values.  相似文献   

12.
A cost-efficient method has been developed based on the combination of hydrothermal exfoliation and spark plasma sintering (SPS) to fabricate Bi0.48Sb1.52Te3 bulk material with multiscale microstructures composed of micro- and nanosized microstructures. The thermoelectric (TE) transport properties of the bulk material with multiscale microstructures were measured along the directions parallel (||) and perpendicular (⊥) to the SPS pressing direction. It is confirmed that the anisotropy of the electrical conductivity (σ) and thermal conductivity (κ) was decreased by the transformation of the microstructure from a single microscale structure to multiscale microstructures. As compared with Bi0.48Sb1.52Te3 bulk material with single microscale microstructures, the κ value of the Bi0.48Sb1.52Te3 bulk material with multiscale microstructures was significantly reduced, the σ value was slightly decreased, while the α value was slightly increased. Thus, a maximum ZT value of 1.1 was achieved at 350 K along the direction perpendicular to the pressing direction, increased by 20%. The enhanced ZT value was mainly attributed to the significant decrease in κ induced by the multiscale microstructures. This work offers a new approach to improve TE performance by multiscale microstructural engineering.  相似文献   

13.
The present study focused on synthesis of Bi0.5Sb1.5Te3 thermoelectric powder using an oxide-reduction process. The phase structure and particle size of the synthesized powders were analyzed using x-ray diffractometry and scanning electron microscopy. The synthesized powder was sintered using the spark plasma sintering method. The thermoelectric properties of the sintered body were evaluated by measuring the Seebeck coefficient, electrical resistivity, and thermal conductivity. Bi0.5Sb1.5Te3 powder was synthesized using a combination of mechanical milling, calcination, and reduction processes, using a mixture of Bi2O3, Sb2O3, and TeO2 powders. The sintered body of the oxide-reduction-synthesized Bi0.5Sb1.5Te3 powder showed p-type thermoelectric characteristics. The thermoelectric properties of the sintered bodies depended on the reduction time. After being reduced for 2 h at 663 K, the sintered body of the Bi0.5Sb1.5Te3 powder showed a figure of merit of approximately 1.0 at room temperature.  相似文献   

14.
The efficient thermoelectric materials (GeTe)0.85?x (Mn0.6Sn0.4Te)0.15(Bi2Te3) x (0 ≤ x ≤ 0.05), in which Bi2Te3 is nanopowder, were prepared by hot pressing. The effect of adding neutral nano-Bi2Te3 content on the thermoelectric properties of germanium telluride was investigated. With increasing x, the thermal conductivity of the prepared samples decreased significantly and the Seebeck coefficient declined slightly, while there was no obvious change in electrical conductivity. In both electrical conductivity and Seebeck coefficient curves at different x values, there are inflection points around 600 K. The maximum dimensionless figure of merit ZT of the prepared materials is 1.54, attained in the temperature range from 700 K to 750 K for x = 0.03. The x-ray diffraction (XRD) pattern shows that Bi2Te3 has been alloyed into the GeTe-MnTe-SnTe alloy, which is consistent with the high-resolution scanning electron microscopy (HRSEM) images. Adding nano-Bi2Te3 to GeTe-based materials could also increase their performance stability at high temperature as a result of decreasing the phase-transition temperature T c.  相似文献   

15.
The thermoelectric (TE) properties of Bi2Te3 compounds intercalated and substituted with Cr, namely Cr x Bi2Te3 and Cr x Bi2?x Te3, respectively, have been investigated to study the influence of chromium on the TE properties of Bi2Te3. The Seebeck coefficients were found to be positive for all the samples in the temperature range between 300 K and 550 K. Although no effective enhancement of the Seebeck coefficient was observed, doping with Cr by means of either substitution or intercalation clearly not only improved the electrical conductivity but also lowered the thermal conductivity of Bi2Te3. As a result of the improvement, the figure of merit ZT is increased up to 0.8 and 0.65 at 300 K for 1% intercalated and 1% substituted Bi2Te3, respectively.  相似文献   

16.
In this work, Te-doped and S-filled S x Co4Sb11.2Te0.8 (x = 0.1, 0.15, 0.2, 0.25, 0.3, 0.4) skutterudite compounds have been prepared using solid state reaction and spark plasma sintering. Thermoelectric measurements of the consolidated samples were examined in a temperature range of 300–850 K, and the influences of S-addition on the thermoelectric properties of S x Co4Sb11.2Te0.8 skutterudites are systematically investigated. The results indicate that the addition of sulfur and tellurium is effective in reducing lattice thermal conductivity due to the point-defect scattering caused by tellurium substitutions and the cluster vibration brought by S-filling. The solubility of tellurium in skutterudites is enhanced with sulfur addition via charge compensation. The thermal conductivity decreases with increasing sulfur content. The highest figure of merit, ZT = 1.5, was obtained at 850 K for S0.3Co4Sb11.2Te0.8 sample, because of the low lattice thermal conductivity.  相似文献   

17.
Se‐doped Mg3.2Sb1.5Bi0.5‐based thermoelectric materials are revisited in this study. An increased ZT value ≈ 1.4 at about 723 K is obtained in Mg3.2Sb1.5Bi0.49Se0.01 with optimized carrier concentration ≈ 1.9 × 1019 cm?3. Based on this composition, Co and Mn are incorporated for the manipulation of the carrier scattering mechanism, which are beneficial to the dramatically enhanced electrical conductivity and power factor around room temperature range. Combined with the lowered lattice thermal conductivity due to the introduction of effective phonon scattering centers in Se&Mn‐codoped sample, a highest room temperature ZT value ≈ 0.63 and a peak ZT value ≈ 1.70 at 623 K are achieved for Mg3.15Mn0.05Sb1.5Bi0.49Se0.01, leading to a high average ZT ≈ 1.33 from 323 to 673 K. In particular, a remarkable average ZT ≈ 1.18 between the temperature of 323 and 523 K is achieved, suggesting the competitive substitution for the commercialized n‐type Bi2Te3‐based thermoelectric materials.  相似文献   

18.
19.
Since Bi2Te3 and Bi2Se3 have the same crystal structure, they form a homogeneous solid solution. Therefore, the thermal conductivity of the solid solution can be reduced by phonon scattering. The thermoelectric figure of merit can be improved by controlling the carrier concentration through doping. In this study, Bi2Te2.85Se0.15:D m (D: dopants such as I, Cu, Ag, Ni, Zn) solid solutions were prepared by encapsulated melting and hot pressing. All specimens exhibited n-type conduction in the measured temperature range (323 K to 523 K), and their electrical conductivities decreased slightly with increasing temperature. The undoped solid solution showed a carrier concentration of 7.37 × 1019 cm?3, power factor of 2.1 mW m?1 K?1, and figure of merit of 0.56 at 323 K. The figure of merit (ZT) was improved due to the increased power factor by I, Cu, and Ag dopings, and maximum ZT values were obtained as 0.76 at 323 K for Bi2Te2.85Se0.15:Cu0.01 and 0.90 at 423 K for Bi2Te2.85Se0.15:I0.005. However, the thermoelectric properties of Ni- and Zn-doped solid solutions were not enhanced.  相似文献   

20.
Considerable research effort has gone into improving the performance of traditional thermoelectric materials such as Bi2?x Sb x Te3 through a variety of nanostructuring approaches. Bottom-up, chemical approaches have the potential to produce very small nanoparticles (?100?nm) with narrow size distribution and controlled shape. For this study, nanocrystalline powder of Bi0.5Sb1.5Te3 was synthesized using a ligand-assisted chemical method, and consolidated into pellets with cold pressing followed by sintering in Ar atmosphere. The thermoelectric transport properties were measured from 7?K to 300?K as a function of sintering temperature. Sintering is found to increase ZT and to move the maximum in ZT to lower temperatures due to a reduction in the free charge concentration. Hall mobility studies indicate that sintering increases the electron mean free path more than it increases the phonon mean free path up to sintering temperature of 598?K. A maximum ZT of 0.42 was measured at temperature of 275?K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号