首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrated the fabrication of thin-film thermoelectric generators and evaluated their generation properties using solar light as a thermal source. Thin-film elements of Bi0.5Sb1.5Te3 (p-type) and Bi2Te2.7Se0.3 (n-type), which were patterned using the lift-off technique, were deposited on glass substrates using radiofrequency magnetron sputtering. After annealing at 300°C, the average Seebeck coefficients of p- and n-type films were 150???V/K and ?104???V/K, respectively, at 50°C to 75°C. A cylindrical lens was used to focus solar light to a line shape onto the hot side of the thin-film thermoelectric module with 15 p?Cn junctions. The minimum width of line-shaped solar light was 0.8?mm with solar concentration of 12.5 suns. We studied the properties of thermoelectric modules with different-sized p?Cn junctions on the hot side, and obtained maximum open voltage and power values of 140?mV and 0.7???W, respectively, for a module with 0.5-mm p?Cn junctions. The conversion efficiency was 8.75?×?10?4%, which was approximately equal to the value estimated by the finite-element method.  相似文献   

2.
The thermoelectric properties of I-doped Bi2Te3 films grown by metal-organic chemical vapor deposition have been studied. I-doped epitaxial (00l) Bi2Te3 films were successfully grown on 4° tilted GaAs (001) substrates at 360 °C. I concentration in the Bi2Te3 films was easily controlled by the variation in a flow rate of H2 carrier gas for the delivery of an isopropyliodide precursor. As I ions in the as-grown Bi2Te3 films were not fully activated, they did not influence the carrier concentration and thermoelectric properties. However, a post-annealing process at 400 °C activated I ions as a donor, accompanied with an increase in the carrier concentration. Interestingly, the I-doped Bi2Te3 films after the post-annealing process also exhibited enhancement of the Seebeck coefficient at the same electron concentration compared to un-doped Bi2Te3 films. Through doping I ions into Bi2Te3, the thermopower was also enhanced in Bi2Te3, and a high power factor of 5 × 10?3 W K?2 m?1 was achieved.  相似文献   

3.
Using shadow masks prepared by standard microfabrication processes, we fabricated in-plane thermoelectric microdevices (4 mm × 4 mm) made of bismuth telluride thin films, and evaluated their performance. We used Bi0.4Te3.0Sb1.6 as the p-type semiconductor and Bi2.0Te2.7Se0.3 as the n-type semiconductor. We deposited p- and n-type thermoelectric thin films on a free-standing thin film of Si3N4 (4 mm × 4 mm × 4 μm) on a Si wafer, and measured the output voltages of the microdevices while heating at the bottom of the Si substrate. The maximum output voltage of the thermoelectric device was 48 mV at 373 K.  相似文献   

4.
Bismuth–antimony–telluride based thin film materials were grown by metal organic vapor phase deposition (MOCVD). A planar-type thermoelectric device was fabricated with p-type Bi0.4Sb1.6Te3 and n-type Bi2Te3 thin films. The generator consisted of 20 pairs of p-type and n-type legs. We demonstrated complex structures of different conduction types of thermoelectric elements on the same substrate using two separate deposition runs of p-type and n-type thermoelectric materials. To demonstrate power generation, we heated one side of the sample with a heating block and measured the voltage output. An estimated power of 1.3 μW was obtained for the temperature difference of 45 K. We provide a promising procedure for fabricating thin film thermoelectric generators by using MOCVD grown thermoelectric materials that may have a nanostructure with high thermoelectric properties.  相似文献   

5.
A thermoelectric joint composed of p-type Bi0.5Sb1.5Te3 (BiSbTe) material and an antimony (Sb) interlayer was fabricated by spark plasma sintering. The reliability of the thermoelectric joints was investigated using electron probe microanalysis for samples with different accelerated isothermal aging time. After aging for 30 days at 300°C in vacuum, the thickness of the diffusion layer at the BiSbTe/Sb interface was about 30 μm, and Sb2Te3 was identified to be the major interfacial compound by element analysis. The contact resistivity was 3 × 10?6 ohm cm2 before aging and increased to 8.5 × 10?6 ohm cm2 after aging for 30 days at 300°C, an increase associated with the thickness of the interfacial compound. This contact resistivity is very small compared with that of samples with solder alloys as the interlayer. In addition, we have also investigated the interface behavior of Sb layers integrated with n-type Bi2Se0.3Te2.7 (BiSeTe) material, and obtained similar results as for the p-type semiconductor. The present study suggests that Sb may be useful as a new interlayer material for bismuth telluride-based power generation devices.  相似文献   

6.
p-Type antimony telluride (Sb2Te3) thermoelectric thin films were deposited on BK7 glass substrates by ion beam sputter deposition using a fan-shaped binary composite target. The deposition temperature was varied from 100°C to 300°C in increments of 50°C. The influence of the deposition temperature on the microstructure, surface morphology, and thermoelectric properties of the thin films was systematically investigated. x-Ray diffraction results show that various alloy composition phases of the Sb2Te3 materials are grown when the deposition temperature is lower than 200°C. Preferred c-axis orientation of the Sb2Te3 thin film became obvious when the deposition temperature was above 200°C, and thin film with single-phase Sb2Te3 was obtained when the deposition temperature was 250°C. Scanning electron microscopy reveals that the average grain size of the films increases with increasing deposition temperature and that the thin film deposited at 250°C shows rhombohedral shape corresponding to the original Sb2Te3 structure. The room-temperature Seebeck coefficient and electrical conductivity range from 101 μV K?1 to 161 μV K?1 and 0.81 × 103 S cm?1 to 3.91 × 103 S cm?1, respectively, as the deposition temperature is increased from 100°C to 300°C. An optimal power factor of 6.12 × 10?3 W m?1 K?2 is obtained for deposition temperature of 250°C. The thermoelectric properties of Sb2Te3 thin films have been found to be strongly enhanced when prepared using the fan-shaped binary composite target method with an appropriate substrate temperature.  相似文献   

7.
We report a simplified sequential evaporation route that can deposit compositionally controllable Bi-Te thermoelectric (TE) thin films without the need for a highly controlled facility. Te and Bi granules were used as starting materials, with their ratio being adjusted to obtain Bi-Te films with different compositions and thicknesses. The as-evaporated and annealed films were subjected to structural and morphological analysis, and their transport properties were measured. X-Ray diffraction data revealed multiple phases for most films. Energy-dispersive x-ray spectroscopy showed that the film composition was Te-enriched due to the large vapor pressure difference of Te and Bi. A Bi2Te3 single phase was obtained in the annealed films, having nominal composition of BiTe1.2. The existence of impurity phases, such as Bi4Te3 or elemental Te, was found in all the as-evaporated films and in the annealed films with other nominal Te/Bi ratios, which degraded the TE properties of the films by increasing their electrical conductivity and reducing their Seebeck coefficient. A pure Bi2Te3 film with nominal Te/Bi ratio of 1.2 exhibited a maximum power factor of 7.9 × 10?4 W m?1 K2 after annealing at 200°C. This work demonstrated a simple, undemanding, reliable method to deposit Bi-Te-based TE thin films that can be utilized to fabricate low-cost TE microgenerators.  相似文献   

8.
This article reports on the development of thin films of p- and n-type bismuth telluride compounds which are suitable for microelectromechanical systems (MEMS) thermoelectric energy harvesters. Films were prepared by the pulsed laser deposition technique. It is shown that the thin films of binary Bi-Te alloys outperformed considerably their ternary counterparts. Furthermore, the highest thermoelectric figure of merit (ZT) was found to be 0.39 for the p-type Bi32Te68 alloy, whereas the optimal n-type alloy was Bi25Te75, which was characterized by a relatively low stress gradient.  相似文献   

9.
p-Type Bi0.45Sb1.55Te3 thermoelectric (TE) thin films have been prepared at room temperature by a magnetron cosputtering process. The effect of postannealing on the microstructure and TE properties of Bi0.45Sb1.55Te3 films has been investigated in the temperature range from room temperature to 350°C. x-Ray diffraction analysis shows that the annealed films have polycrystalline rhombohedral crystal structure, and the average grain size increases from 36?nm to 64?nm with increasing annealing temperature from room temperature to 350°C. Electron probe microanalysis shows that annealing above 250°C can cause Te reevaporation, which induces porous thin films and dramatically affects electrical transport properties of the thin films. TE properties of the films have been investigated at room temperature. The hole concentration shows a trend from descent to ascent and has a minimum value at the annealing temperature of 200°C, while the Seebeck coefficient shows an opposite trend and a maximum value of 245?μV?K?1. The electrical resistivity monotonically decreases from 19.8?mΩ?cm to 1.4?mΩ?cm with increasing annealing temperature. Correspondingly, a maximum value of power factor, 27.4?μW?K?2?cm?1, was obtained at the annealing temperature of 250°C.  相似文献   

10.
Since Bi2Te3 and Bi2Se3 have the same crystal structure, they form a homogeneous solid solution. Therefore, the thermal conductivity of the solid solution can be reduced by phonon scattering. The thermoelectric figure of merit can be improved by controlling the carrier concentration through doping. In this study, Bi2Te2.85Se0.15:D m (D: dopants such as I, Cu, Ag, Ni, Zn) solid solutions were prepared by encapsulated melting and hot pressing. All specimens exhibited n-type conduction in the measured temperature range (323 K to 523 K), and their electrical conductivities decreased slightly with increasing temperature. The undoped solid solution showed a carrier concentration of 7.37 × 1019 cm?3, power factor of 2.1 mW m?1 K?1, and figure of merit of 0.56 at 323 K. The figure of merit (ZT) was improved due to the increased power factor by I, Cu, and Ag dopings, and maximum ZT values were obtained as 0.76 at 323 K for Bi2Te2.85Se0.15:Cu0.01 and 0.90 at 423 K for Bi2Te2.85Se0.15:I0.005. However, the thermoelectric properties of Ni- and Zn-doped solid solutions were not enhanced.  相似文献   

11.
A thermoelectric thin-film device of the cross-plane configuration was fabricated by flip-chip bonding of the top electrodes to 242 pairs of electrodeposited n-type Bi2Te3 and p-type Sb2Te3 thin-film legs on the bottom substrate. The electrodeposited Bi2Te3 and Sb2Te3 films of 20-μm thickness exhibited Seebeck coefficients of ?59 μV/K and 485 μV/K, respectively. The internal resistance of the thin-film device was measured as 3.7 kΩ, most of which was attributed to the interfacial resistance of the flip-chip joints. The actual temperature difference ΔT G working across the thin-film legs was estimated to be 10.4 times smaller than the apparent temperature difference ΔT applied across the thin-film device. The thin-film device exhibited an open-circuit voltage of 0.294 V and a maximum output power of 5.9 μW at an apparent temperature difference ΔT of 22.3 K applied across the thin-film device.  相似文献   

12.
To investigate the effect of annealing in controlled atmosphere on the thermoelectric properties of Bi-Te film, Te-deficient Bi-Te film was deposited by sputtering, and then annealed with various Bi-Te alloy powders with different Te concentrations in a closed system at 250°C for 24?h. Bi-Te phases other than Bi2Te3 in the as-deposited film could be removed when the film was annealed with Bi-Te source powder containing 62?at.% or higher content of Te. At the same time, the values of Seebeck coefficient and carrier concentration of the films approach ?105???V/K and 3?×?1019?cm?3 to 6?×?1019?cm?3, respectively. This result indicates that mass transport of Te to the film takes place, resulting in the formation of Bi2Te3 phase and reduction of the amount of p-type carriers due to compositional change of the film from Te-deficient to stoichiometric. Annealing in controlled Te-vapor atmosphere is an effective method to improve the thermoelectric properties of Bi-Te film by changing the composition and phase of Te-deficient film to stoichiometric Bi2Te3 film.  相似文献   

13.
We report a straightforward methodology for the fabrication of high-temperature thermoelectric (TE) modules using commercially available solder alloys and metal barriers. This methodology employs standard and accessible facilities that are simple to implement in any laboratory. A TE module formed by nine n-type Yb x Co4Sb12 and p-type Ce x Fe3CoSb12 state-of-the-art skutterudite material couples was fabricated. The physical properties of the synthesized skutterudites were determined, and the module power output, internal resistance, and thermocycling stability were evaluated in air. At a temperature difference of 365 K, the module provides more than 1.5 W cm?3 volume power density. However, thermocycling showed an increase of the internal module resistance and degradation in performance with the number of cycles when the device is operated at a hot-side temperature higher than 573 K. This may be attributed to oxidation of the skutterudite thermoelements.  相似文献   

14.
To investigate the effects of segmentation of thermoelectric materials on performance levels, n-type segmented Bi2Te3/PbSe0.5Te0.5 thermoelectric material was fabricated, and its output power was measured and compared with those of Bi2Te3 and PbSe0.5Te0.5. The two materials were bonded by diffusion bonding with a diffusion layer that was ~18 μm thick. The electrical conductivity, Seebeck coefficient, and power factor of the segmented Bi2Te3/PbSe0.5Te0.5 sample were close to the average of the values for Bi2Te3 and PbSe0.5Te0.5. The output power of Bi2Te3 was higher than those of PbSe0.5Te0.5 and the segmented sample for small ΔT (300 K to 400 K and 300 K to 500 K), but that of the segmented sample was higher than those of Bi2Te3 and PbSe0.5Te0.5 when ΔT exceeded 300 K (300 K to 600 K and 300 K to 700 K). The output power of the segmented sample was about 15% and 73% higher than those of the Bi2Te3 and PbSe0.5Te0.5 samples, respectively, when ΔT was 400 K (300 K to 700 K). The efficiency of thermoelectric materials for large temperature differences can be enhanced by segmenting materials with high performance in different temperature ranges.  相似文献   

15.
In Bi2Te2Se the defect chemistry involves native defects that compete such that they can either exchange dominance or else significantly compensate each other. Here we show how the net carrier concentration, n ? p, which depends on the relative amounts of these defects and is readily obtained from Hall data, can be used as a fundamental materials parameter to describe the varied behavior of the thermoelectric properties as a function of compensation. We report the effects of tuning this parameter over multiple orders of magnitude by hole-doping the n-type material Bi2Te2Se0.995, which is already significantly compensated because of its Se deficiency. Crystals with different levels of hole doping were achieved by two separate approaches, namely by selecting pieces from different locations in an undoped crystal in which a systematic carrier concentration gradient had been induced by its growth conditions, and alternatively by doping with Sn for Bi. The thermoelectric power factors for Bi2?x Sn x Te2Se0.995 for x = 0, 0.002, 0.005, 0.010, and 0.040 are reported, and the dependence of the transport properties on the extent of compensation is discussed.  相似文献   

16.
The effect of dimensionality and nanostructure on thermoelectric properties in Bi2Te3-based nanomaterials is summarized. Stoichiometric, single-crystalline Bi2Te3 nanowires were prepared by potential-pulsed electrochemical deposition in a nanostructured Al2O3 matrix, yielding transport in the basal plane. Polycrystalline, textured Sb2Te3 and Bi2Te3 thin films were grown at room temperature using molecular beam epitaxy and subsequently annealed at 250°C. Sb2Te3 films revealed low charge carrier density of 2.6?×?1019?cm?3, large thermopower of 130???V?K?1, and large charge carrier mobility of 402?cm2?V?1?s?1. Bi2(Te0.91Se0.09)3 and (Bi0.26Sb0.74)2Te3 nanostructured bulk samples were prepared from as-cast materials by ball milling and subsequent spark plasma sintering, yielding grain sizes of 50?nm and thermal diffusivities reduced by 60%. Structure, chemical composition, as well as electronic and phononic excitations were investigated by x-ray and electron diffraction, nuclear resonance scattering, and analytical energy-filtered transmission electron microscopy. Ab?initio calculations yielded point defect energies, excitation spectra, and band structure. Mechanisms limiting the thermoelectric figure of merit ZT for Bi2Te3 nanomaterials are discussed.  相似文献   

17.
18.
We have investigated the origin of crystal orientation for nanocrystalline bismuth telluride-based thin films. Thin films of p-type bismuth telluride antimony (Bi–Te–Sb) and n-type bismuth telluride selenide (Bi–Te–Se) were fabricated by a flash evaporation method, with exactly the same deposition conditions except for the elemental composition of the starting powders. For p-type Bi–Te–Sb thin films the main x-ray diffraction (XRD) peaks were from the c-axis (Σ{00l}/Σ{hkl} = 0.88) whereas n-type Bi–Te–Se thin films were randomly oriented (Σ{00l}/Σ{hkl} = 0.40). Crystal orientation, crystallinity, and crystallite size were improved for both types of thin film by sintering. For p-type Bi–Te–Sb thin films, especially, high-quality structures were obtained compared with those of n-type Bi–Te–Se thin films. We also estimated the thermoelectric properties of the as-grown and sintered thin films. The power factor was enhanced by sintering; maximum values were 34.9 μW/cm K2 for p-type Bi–Te–Sb thin films at a sintering temperature of 300°C and 23.9 μW/cm K2 for n-type Bi–Te–Se thin films at a sintering temperature of 350°C. The exact mechanisms of film growth are not yet clear but we deduce the crystal orientation originates from the size of nano-clusters generated on the tungsten boat during flash evaporation.  相似文献   

19.
The thermoelectric behavior of the transition-metal disulfides n-type NiCr2S4 and p-type CuCrS2 has been investigated. Materials prepared by high-temperature reaction were consolidated using cold-pressing and sintering, hot-pressing in graphite dies or spark-plasma sintering in tungsten carbide dies. The consolidation conditions have a marked influence on the electrical transport properties. In addition to the effect on sample density, altering the consolidation conditions results in changes to the sample composition, including the formation of impurity phases. Maximum room-temperature power factors were 0.18 mW m?1 K?2 and 0.09 mW m?1 K?2 for NiCr2S4 and CuCrS2, respectively. Thermal conductivities of ca. 1.4 W m?1 K?1 and 1.2 W m?1 K?1 lead to figures of merit of 0.024 and 0.023 for NiCr2S4 and CuCrS2, respectively.  相似文献   

20.
We present the effects of In4Se3 addition on thermoelectric properties of n-type Bi2Te2.7Se0.3. In this study, polycrystalline (In4Se3) x -(Bi2Te2.7Se0.3)1?x pellets were prepared by mechanical alloying followed by spark plasma sintering (SPS). The thermoelectric properties such as Seebeck coefficient and electrical and thermal conductivities were measured in the temperature range of 300 K to 500 K. Addition of In4Se3 into Bi2Te2.7Se0.3 resulted in segregation of In4Se3 phase within Bi2Te2.7Se0.3 matrix. The Seebeck coefficient of the (In4Se3) x -(Bi2Te2.7Se0.3)1?x samples exhibited lower values compared with that of pure Bi2Te2.7Se0.3 phase. This reduction of Seebeck coefficient in n-type (In4Se3) x -(Bi2Te2.7Se0.3)1?x is attributed to the formation of unwanted p-type phases by interdiffusion through the interface between (In4Se3) x and (Bi2Te2.7Se0.3)1?x as well as consequently formed Te-deficient matrix. However, the decrease in electrical resistivity and thermal conductivity with addition of In4Se3 leads to an enhanced thermoelectric figure of merit (ZT) at a temperature range over 450 K: a maximum ZT of 1.0 is achieved for the n-type (In4Se3)0.03-(Bi2Te2.7Se0.3)0.97 sample at 500 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号