首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Microfluidic flow is geometrically mediated at a trifurcating junction allowing periodically formed, equally spaced out emulsion droplets to redistribute and fuse consistently. This is achieved by controlling the ratio between the droplet transport time across the trifurcating junction and the drainage time of the fluid volume separating the droplets t r/t d. Three different microfluidic trifurcation geometries have been designed and compared for their droplet fusion efficiencies. Fusion of up to six droplets has been observed in these devices. The fusion of two droplets occurs when t r/t d is equal to 1.25 and the number of fused droplets increases with t r/t d. When the junction length (d) is 216 μm fusion of 2–6 six droplets are possible however when the junction length is increased to 360 μm fusion of only two droplets is observed.  相似文献   

2.
Microfluidic devices with micro-sieve plate as the dispersion medium have been widely used for the mass production of emulsions. While unfortunately, few studies have so far been made for the droplet generation rules in those devices. In this work, the droplet generation processes in micro-sieve dispersion devices are investigated with specially designed micro-sieve pore arrays. The effects of channel structure, pore arrangement, and feeding method of dispersed phase on the average size and distribution of droplets are studied carefully. It is found the dimensionless average droplet diameters (d av/d e) in micro-sieve dispersion devices can be represented by a linear relation with Ca−1/4 of continuous phase, the same as the scaling law in T-junction microchannels. The flow distribution among pores and the steric hindrance between droplets affect the diameter distribution of generated droplet very much. Monodispersed droplets with polydispersity index less than 5% can be made at Ca number larger than 0.01 and phase ratio (Q D/Q C) less than 1/6 in the present investigation.  相似文献   

3.
For further understanding the dispersion process in the T-shaped microfluidic device, a double-pore T-shaped microchannel was designed and tested with octane/water system to form monodispersed plugs and droplets in this work. The liquid–liquid two-phase flow patterns were investigated and it was found that only short plugs, relative length L/w < 1.4, were produced. Additionally, the droplets flow was realized at phase ratios (F C /F D) just higher than 0.5, which is much smaller than that in the single-pore T-shaped microchannels. A repulsed effect between the initial droplets was observed in the droplet formation process and the periodic fluctuation flow of the dispersed phase was discussed by analyzing the resistances. Besides, the effect of the two-phase flow rates on the plug length and the droplet diameter was investigated. Considering the mutual effect of the initial droplets and the equilibrium between the shearing force with the interfacial tension, phase ratio and Ca number were introduced into the semi-empirical models to present the plug and droplet sizes at different operating conditions.  相似文献   

4.
This article reports a design that reliably adds reagents into droplets by exploiting the physics of fluid flow at a T-junction in the microchannel. An expanded section right after the T-junction enhances merging of a stream with a droplet, eliminates the drawbacks such as extra droplet formation and long mixing time. The expanded section reduces the pressure buildup at the T-junction and minimizes the tendency to form extra droplets; plays the role in creating low Laplace pressure jump across the interface of the droplet forming from the T-junction which reduces the probability of forming extra droplet in the merging process; provides space for droplet coalescence if there is an extra droplet due to droplet break-up before merging. In this design, after merging, the reactants are in axial arrangement inside the droplets which lead to faster mixing. Reliable addition of reagent to the droplets happens for the combination of flow rates in a broad range from 25 to 250 μl/h, for both DI water (Q DI) and fluorescent (Q fluo) streams.  相似文献   

5.
Using the computational fluid dynamics (CFD) code FLUENT 6 together with the fine particle model (FPM), numerical simulations of droplet dynamics in a 12.4 m3 cloud tank were conducted. The coupled fields of water vapor, temperature, flow velocity, particle number concentration, and particle mass concentration inside the cloud tank were computed.The system responses to changes of the wall's temperature and mass fraction of water vapor, respectively, were investigated. Typical times for mixing the cloud tank's contents are in the range of some tens of seconds. The maximum volume-averaged deviations from the mean of temperature and mass fraction of water vapor are around 5% of the respective parameter changes applied to the wall.Time-dependent simulations were performed in order to study the growth of ammonium-sulfate particles in humid air at around room temperature. Supersaturation up to (Sw–1)=8.2×10−3 was achieved by the expansion of the gas. The particles were activated and grew rapidly to a maximum diameter of 5.2×10−6 m after critical supersaturation was reached. After Sw fell again below the equilibrium value, the particles shrank quickly and deactivated roughly 60 s after activation.The spatial inhomogeneities of temperature and water-vapor concentration cause volume-averaged deviations of the particle number N and diameter dg of up to 2.3% and 36%, respectively.  相似文献   

6.
The wetting behavior and spreading dynamics of small polymer melt droplets in the course of transition from partial to complete wetting conditions on a flat structureless solid substrate have been studied by dynamic Monte Carlo simulation. From the density profiles of the drops we determine the contact angles at varying strength of the van der Waals surface forces in the whole interval of partial wetting. The validity of Young's equation is then tested whereby the surface tension of the melt/vapor interface is derived independently from interfacial fluctuation analysis, and the surface free energy of the melt at the substrate—from the anisotropy of the local pressure at the wall. The bending rigidity of the melt/vapor interface turns out negative, as recently predicted for short-range interactions.We carry out computer experiments which show that Tanner's law for the kinetics of drop spreading holds also on nanoscopic scales. The observed density profiles of spreading droplets confirm earlier predictions that the central cap-shaped region of the droplets shrinks at the expense of a transition region (“foot”) surrounded by a precursor film which is roughly one monolayer thick. At later times the precursor film breaks into individual polymer chains and advances in typically diffusive manner as found in laboratory experiments.Eventually we investigate the impact of line tension on nanodroplets behavior at varying strength of adhesion and demonstrate that the Gretz equation which incorporates line tension into Young's rule holds even on nanoscale and predicts important properties of the drops subject to droplet size.  相似文献   

7.
This article describes the generation of microdispersed bubbles and droplets in a double T-junctions microfluidic device to form immiscible gas/liquid/liquid three-phase flowing systems. Segmented gas plugs are controllably prepared in water at the first T-junction to form gas/liquid two-phase fluid with the perpendicular flow cutting method. Then using this two-phase fluid as the cross-shearing fluid for the oil phase at the second T-junction, the gas/liquid/liquid three-phase flowing systems are prepared. Interestingly, it is found that the break-up of the oil droplets is mainly dominated by the cutting effect of the gas/liquid interface or the pressure drop across the emerging droplet, but independent with the viscous shearing effect of the continuous phase, even at the capillary number (Ca = u wμwow) higher than 0.01. The size laws and the distributions of the bubbles and droplets are investigated carefully, and a mathematical model has been developed to relating the operating conditions with the dispersed sizes.  相似文献   

8.
A scaling model for electrowetting-on-dielectric microfluidic actuators   总被引:2,自引:2,他引:0  
A hydrodynamic scaling model of droplet actuation in an electrowetting-on-dielectric (EWD) actuator is presented that takes into account the effects of contact angle hysteresis, drag from the filler fluid, drag from the solid walls, and change in the actuation force while a droplet traverses a neighboring electrode. Based on this model, the threshold voltage, V T, for droplet actuation is estimated as a function of the filler medium of a scaled device. It is shown that scaling models of droplet splitting and liquid dispensing all show a similar scaling dependence on [tr(d/L)]1/2, where t is insulator thickness and d/L is the aspect ratio of the device. It is also determined that reliable operation of a EWD actuator is possible as long as the device is operated within the limits of the Lippmann–Young equation. The upper limit on applied voltage, V sat, corresponds to contact-angle saturation. The minimum 3-electrode splitting voltages as a function of aspect ratio d/L < 1 for an oil medium are less than V sat. However, for an air medium the minimum voltage for 3-electrode droplet splitting exceeds V sat for d/L ≥ 0.4. EWD actuators were fabricated to operate with droplets down to 35pl. Reasonable scaling results were achieved.
R. B. FairEmail:
  相似文献   

9.
This paper reports the production of monodisperse water-in-oil (W/O) emulsions using new microchannel emulsification (MCE) devices, asymmetric straight-through MC arrays that were hydrophobically modified. The silicon asymmetric straight-through MC arrays consisted of numerous pairs of microslots and circular microholes whose cross-sectional sizes were 10 μm. This paper primarily focused on investigating the effect of the osmotic pressure of a dispersed phase (Πd) on MCE. This paper also investigated the effects of the type of continuous-phase oils and the dispersed-phase flux (J d) on MCE. The dispersed phases were Milli-Q water and Milli-Q water solutions containing sodium chloride. The continuous phases were decane (as control), hexane, medium chain triacylglyceride (MCT), and refined soybean oil (RSO) solutions containing tetraglycerin monolaurate condensed ricinoleic acid ester (TGCR) as a surfactant. At Πd of exceeding threshold, highly uniform aqueous droplets with coefficients of variation of less than 3% were stably generated via hydrophobic asymmetric straight-through MCs. Monodisperse W/O emulsions with average droplet diameters between 32 and 45 μm were produced using the alkane–oil and triglyceride–oil solutions as the continuous phase. This work also demonstrated that the hydrophobic asymmetric straight-through MC array had remarkable ability to produce highly uniform aqueous droplets at very high J d of up to 1,200 L m−2 h−1.  相似文献   

10.
We consider the problem of indexing a set of objects moving in d-dimensional spaces along linear trajectories. A simple external-memory indexing scheme is proposed to efficiently answer general range queries. The following are examples of the queries that can be answered by the proposed method: report all moving objects that will (i) pass between two given points within a specified time interval; (ii) become within a given distance from some or all of a given set of other moving objects. Our scheme is based on mapping the objects to a dual space, where queries about moving objects are transformed into polyhedral queries concerning their speeds and initial locations. We then present a simple method for answering such polyhedral queries, based on partitioning the space into disjoint regions and using a B+-tree to index the points in each region. By appropriately selecting the boundaries of each region, we guarantee an average search time that matches a known lower bound for the problem. Specifically, for a fixed d, if the coordinates of a given set of N points are statistically independent, the proposed technique answers polyhedral queries, on the average, in O((N/B)1−1/d⋅(log B N)1/d+K/B) I/O's using O(N/B) space, where B is the block size, and K is the number of reported points. Our approach is novel in that, while it provides a theoretical upper bound on the average query time, it avoids the use of complicated data structures, making it an effective candidate for practical applications. The proposed index is also dynamic in the sense that it allows object insertion and deletion in an amortized update cost of log B(N) I/O's. Experimental results are presented to show the superiority of the proposed index over other methods based on R-trees. recommend Ahmed Elmagarmid  相似文献   

11.
Co3O4-based nanosystems were prepared on polycrystalline Al2O3 by plasma enhanced-chemical vapor deposition (PE-CVD), at temperatures ranging between 200 and 400 °C. The use of two different precursors, Co(dpm)2 (dpm = 2,2,6,6-tetramethyl-3,5-heptanedionate) and Co(hfa)2·TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N′,N′-tetramethylethylenediamine) enabled the synthesis of undoped and fluorine-doped Co3O4 specimens, respectively. A thorough characterization of their properties was performed by glancing incidence X-ray diffraction (GIXRD), atomic force microscopy (AFM), field emission-scanning electron microscopy (FE-SEM), secondary ion mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS). For the first time, the gas sensing properties of such PE-CVD nanosystems were investigated in the detection of ethanol and acetone. The results show an appreciable response improvement upon doping and functional performances directly dependent on the fluorine content in the Co3O4 system.  相似文献   

12.
Although many aspects of microchannel emulsification have been covered in literature, one major uncharted area is the effect of viscosity of both phases on droplet size in the stable droplet generation regime. It is expected that for droplet formation to take place, the inflow of the continuous phase should be sufficiently fast compared to the outflow of the liquid that is forming the droplet. The ratio of the viscosities was therefore varied by using a range of continuous and dispersed phases, both experimentally and computationally. At high viscosity ratio (η d/η c), the droplet size is constant; the inflow of the continuous phase is fast compared to the outflow of the dispersed phase. At lower ratios, the droplet diameter increases, until a viscosity ratio is reached at which droplet formation is no longer possible (the minimal ratio). This was confirmed and elucidated through CFD simulations. The limiting value is shown to be a function of the microchannel design, and this should be adapted to the viscosity of the two fluids that need to be emulsified.  相似文献   

13.
In this paper we present a modified Fourier–Galerkin method for the numerical solution of the Poisson and Helmholtz equations in a d-dimensional box. The inversion of the differential operators requires O(N d ) operations, where N d is the number of unknowns. The total cost of the presented algorithms is O(N d :log2:N), due to the application of the Fast Fourier Transform (FFT) at the preprocessing stage. The method is based on an extension of the Fourier spaces by adding appropriate functions. Utilizing suitable bilinear forms, approximate projections onto these extended spaces give rapidly converging and highly accurate series expansions.  相似文献   

14.
We report the droplet generation behavior of a microfluidic droplet generator with a controllable deformable membrane wall using experiments and analytical model. The confinement at the droplet generation junction is controlled by using external pressure, which acts on the membrane, to generate droplets smaller than junction size (with other parameters fixed) and stable and monodispersed droplets even at higher capillary numbers. A non-dimensional parameter, i.e., controlling parameter K p, is used to represent the membrane deformation characteristics due to the external pressure. We investigate the effect of the controlled membrane deformation (in terms of K p), viscosity ratio λ and flow rate ratio r on the droplet size and mobility. A correlation is developed to predict droplet size in the controllable deformable microchannel in terms of the controlling parameter K p, viscosity ratio λ and flow rate ratio r. Due to the deflection of the membrane wall, we demonstrate that the transition from the stable dripping regime to the unstable jetting regime is delayed to a higher capillary number Ca (as compared to rigid droplet generators), thus pushing the high throughput limit. The droplet generator also enables generation of droplets of sizes smaller than the junction size by adjusting the controlling parameter.  相似文献   

15.
IEEE 802.16竞争解决方案的性能分析   总被引:4,自引:0,他引:4  
目前,IEEE 802.16标准推荐采用基于截断二进制指数回退算法的竞争解决方案.分析了该方案同IEEE 802.11竞争机制的区别,给出了传送机会利用率u、带宽请求延时d以及带宽请求丢失率pd等性能指标的计算方法.通过性能模拟,讨论了初始化回退窗口W、用户站数目n以及单位时间帧内传送机会数目Nto等参数对性能指标的影响,进而得出基站调整性能参数的一般策略.这些策略对于基站进行上行带宽资源的分配具有指导意义.  相似文献   

16.
Computational fluid dynamics and micro-flow visualization (μ-FV) have been complementarily performed to study the evolution of a single droplet ejected from a bend-mode piezoelectric inkjet printhead. The numerical simulation is characterized by the coupled piezoelectric-structural-fluid solution procedure and verified by the μ-FV results. The in-house numerical code is subsequently applied to investigate the influences of electric voltage φ pp, pulse shape, ink property, and nozzle diameter D n on the droplet volume, velocity, and configurations. φ pp studied ranges from 14 to 26 V and pulse shape is explored by varying the key time intervals with fixed voltage slopes. The influence of ink property is examined by investigating the dynamic viscosity μ and surface tension σ separately. Investigation on the effects of nozzle diameter is also conducted by decreasing D n from 26 to 11 at 3 μm interval. The computed results are found in good agreement with the experimental ones. New findings are to discover the critical ranges of electric waveform parameters, μ, and σ outside which the phenomena of satellite droplets and puddle formation at the nozzle opening are absent. In addition, the imbedded physical rationales for these critical ranges are provided. The results are also new in terms of the identifications of the critical σ and D n for the reference of improving the droplet quality.  相似文献   

17.
This paper presents the design and implementation of an efficient reconfigurable parallel prefix computation hardware on field-programmable gate arrays (FPGAs). The design is based on a pipelined dataflow algorithm, and control logic is added to reconfigure the system for arbitrary parallelism degree. The system receives multiple input streams of elements in parallel and produces output streams in parallel. It has an advantage of controlling the degree of parallelism explicitly at run time. The time complexity of the design is O(d+(Nd)/d), where d and N are parallelism degree and stream size, respectively. When the stream size is sufficiently larger than the initial trigger time of the pipeline (d), the time complexity becomes O(N/d). Unlike the prefix computation circuits found in the literature, the design is scalable for different problem sizes including unknown sized data. The design is modular based on a finite state machine, and implemented and tested for target FPGA devices Xilinx Spartan2S XC2S300EFT256-6Q and XC2S600EFG676-6.
H. K. DaiEmail:
  相似文献   

18.
We investigated the adsorption of Taq enzyme, using sessile droplets, on different microfluidic materials. In propagating adsorption materials, the contact angle (CA) of a sessile Taq droplet continually recedes and collapses due to adsorption. Contrastingly, in contained adsorption materials it exhibits an initial reduced CA due to an instantaneous adsorption, however remains time-invariant. Spectrophotometer analysis on SU8, a propagating adsorption material, reveals a gradual loss of Taq from the droplet onto the surface during droplet collapsing, as opposed to a rapid saturated adsorption in Teflon, a contained adsorption material. AFM micrographs of the adsorbed surfaces suggest a network-like structure in SU8 and distinctly different pillar-like structures in Teflon. With this understanding, we have successfully applied a SU8-Teflon coating to impart a time-invariant contact angle with minimal loss of Taq in surface microfluidic devices.  相似文献   

19.
A new algorithm for the computation of discrete Legendre transforms is discussed. Classical solutions have a running time proportional toN 2d , whereN is the size of the spatial grid andd is the space dimension. The new algorithm has a running timeO((N log2 N) d ). A general application of this algorithm is to the weak solutions of hyperbolic systems of conservation laws as considered by Lax (1973,Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, S.I.A.M.). The potential of the method is illustrated on the adhesion model, a multi-dimensional version of the Burgers equation, used to study the formation of large-scale structures in cosmology.  相似文献   

20.
Air temperature (T2m or Tair) measurements from 20 ground weather stations in Berlin were used to estimate the relationship between air temperature and the remotely sensed land surface temperature (LST) measured by Moderate Resolution Imaging Spectroradiometer over different land-cover types (LCT). Knowing this relationship enables a better understanding of the magnitude and pattern of Urban Heat Island (UHI), by considering the contribution of land cover in the formation of UHI. In order to understand the seasonal behaviour of this relationship, the influence of the normalized difference vegetation index (NDVI) as an indicator of degree of vegetation on LST over different LCT was investigated. In order to evaluate the influence of LCT, a regression analysis between LST and NDVI was made. The results demonstrate that the slope of regression depends on the LCT. It depicts a negative correlation between LST and NDVI over all LCTs. Our analysis indicates that the strength of correlations between LST and NDVI depends on the season, time of day, and land cover. This statistical analysis can also be used to assess the variation of the LST–T2m relationship during day- and night-time over different land covers. The results show that LSTDay and LSTNight are correlated significantly (= 0.0001) with T2mDay (daytime air temperature) and T2mNight (night-time air temperature). The correlation (r) between LSTDay and TDay is higher in cold seasons than in warm seasons. Moreover, during cold seasons over every LCT, a higher correlation was observed during daytime than during night-time. In contrast, a reverse relationship was observed during warm seasons. It was found that in most cases, during daytime and in cold seasons, LST is lower than T2m. In warm seasons, however, a reverse relationship was observed over all land-cover types. In every season, LSTNight was lower than or close to T2mNight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号