首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tri-doped Ca_9 LiY_(2/3)(PO_4)_7:Ce~(3+),Tb~(3+),Mn~(2+)phosphors were prepared by a high-temperature solid state method.Under UV light excitation,Ca_9 LiY_(2/3)(PO_4)_7:Ce~(3+)samples exhibit a broad band ranging from 320 to 500 nm.At 77 K,the emission spectra of Ca_9 LiY_(2/3)(PO_4)7:Ce~(3+)samples present two obvious emission peaks,indicating that Ce~(3+)ions occupy two different kinds of lattice sites(Ca(1/2) and Ca(3)),As a good sensitizer for Tb~(3+),Ce~(3+)ions in Ca_9 LiY_(2/3)(PO_4)_7 lattice can effectively transfer part of energy to Tb~(3+),and the energy trans fer mechanism is determined to be dipole-dipole interaction.Consequently,the emitting color for Ce~(3+) and Tb~(3+) co-doped Ca_9 LiY_(2/3)(PO_4)_7 samples can be tuned from bluish violet to green.In order to further enlarge the emission gamut,Mn~(2+)ions as red emission components were added,forming tri-doped single-phase Ca_9 LiY_(2/3)(PO_4)_7:Ce~(3+),Tb~(3+),Mn~(2+)phosphors.The Ca_9 LiY_(2/3)(PO_4)_7:Ce~(3+),Tb~(3+),Mn~(2+)phosphors exhibit tunable emission properties through controlling the relative doping concentration of Ce~(3+),Tb~(3+)and Mn~(2+).Especially,Ca_9 LiY_(2/3)(PO_4)_7:0.09 Ce~(3+),0.12 Tb~(3+),0.30 Mn~(2+)can emit warm white light.The sample shows good thermal stability.At 150℃,the emission intensity for Ce~(3+)(360 nm),Tb~(3+)(545 nm) and Mn~(2+)(655 nm) decreases to 63%,69%,and 72% of its initial intensity,respectively.Moreover,the sample obtains good stability after 10 cycles between room temperature and150℃.  相似文献   

2.
A series of Eu~(2+),Tb~(3+)-codoped Sr_3 Y(PO_4)_3(SYP) green phosphors were synthesized by hightemperature solid-state reaction. Several techniques, such as X-ray diffraction, UV-vis spectrum,and photoluminescence spectrum, were used to investigate the obtained phosphors. The present study investigates in detail photoluminescence excitation and emission properties, energy transfer between the two dopants, and effects of doping ions on optical band gap. SYP:0.05 Eu2+ phosphor shows an intense and broad excitation band ranging from 220 to 400 nm and exhibits a bright green emission band with CIE chromaticity coordinates(0.189, 0.359) under 350 nm excitation. Green emission of SYP:0.03 Tb3+ is intensified by codoping with Eu~(2+), and energy transfer mechanism between them is demonstrated to be a dipole-dipole interaction. Upon 350 nm excitation, SYP:Eu~(2+),Tb~(3+) phosphors exhibits two dominating bands peaking at 466 and 545 nm, which are assigned to 4 f~65 d~1→4 f~7 transition of Eu~(2+) ions and ~5 D_4→~7 F_5 transition of Tb~(3+) ions, respectively. Optimal doping concentrations of Eu~(2+) and Tb~(3+) in the SYP host are 5 mol% and 15 mol%, respectively. Results indicate that SYP:Eu~(2+),Tb~(3+) phosphors are potentially used as green-emitting phosphors for white light-emitting diodes.  相似文献   

3.
A series of single Ce3+ doped and Ce3+ and Tb3+ co-doped Na2BaCa(PO4)2 (NBCP) phosphors was synthesized by conventional solid-stated reaction method. The crystal structure, luminescence properties, thermal stability and energy transfer were carefully investigated. Ce3+ is inferred to substitute the Ba2+ site in NBCP lattice. The color-tunable emission from blue to green is observed by adjusting Tb3+ concentration among NBCP:0.03Ce3+,yTb3+ phosphors. The energy transfer behavior from Ce3+ to Tb3+ ions is both illustrated by co-doped PL spectra and decay curves. The energy transfer efficiency is as high as 91.5%. The mechanism of energy transfer is resonance type of dipole-dipole transition. In this work, the optimal phosphor exhibits the excellent thermal stability which keeps at 94.9% of that initial value at room temperature when temperature reaches to 150 °C. The Ce3+ and Tb3+ co-doped NBCP phosphor is a promising candidate for the application in the general lighting and display fields.  相似文献   

4.
The(Gd_(0.97-x)Eu_xTb_(0.03))AIO_3(x= 0.005-0.07) phosphors were synthesized by the co-precipitation method,using ammonium bicarbonate as a precipitant.The combined technologies of FT-IR,XRD,FESEM,PLE/PL and photo luminescence decay analysis were used to study the phase evolution,morphologies and luminescent properties.The phosphors with good dispersion exhibit strong vivid red emission located at 617 nm(~5 D_0-~7 F_2 transition of Eu~(3+)) under the optimal excitation wavelength of 275 nm(~4 f~8-4 f~75 d~1 transition of Tb~(3+),~8 S_(7/2)→6~I_J transition of Gd~(3+)).The presence of Gd~(3+) and Tb~(3+) excitation bands on the PLE spectra monitoring the Eu~(3+) emission directly gives an evidence of Tb~(3+) → Eu~(3+) and Gd~(3+) → Eu~(~(3+)) energy transfer,The emission intensity varies with the Eu~(3+) amount,and the quenching concentration is ~5 at% which is close to the calculated value.The quenching mechanism is determined to be the exchange reaction between Eu~(3+).The temperature-dependent PL analysis indicates that the best(Gd_(0.92)Eu_(0.05)Tb_(0.03))AlO_3 sample possesses good thermally stable properties.All the(Gd_(0.97-x)Eu_xTb_(0.03))AIO_3 phosphors in this work have similar CIE chromaticity coordinates and color temperatures,which are(0.65 ± 0.02,0.35 ± 0.02) and ~2558 K,respectively.Fluorescence decay analysis shows that the lifetime for~617 nm emission decreases with the content of Eu~(3+) and temperature increasing.Owing to the Tb~(3+)→ Eu~(3+) energy transfer,the luminescent properties of the(Gd_(0.92)Eu_(0.05)Tb_(0.03))AlO_3 phosphors are superior to the single Eu~(~(3+)) doped sample(Gd_(0.95)Eu_(0.05))AlO_3.As a result,the prepared phosphors may be widely used in solid-state display and light emitting devices.  相似文献   

5.
A green long persistent luminescence (LPL) phosphor Ca3Ga4O9:Tb3+/Zn2+ was prepared. Ca3Ga4O9 matrix exhibits blue self-activated LPL due to the creation of intrinsic traps. When Tb3+ is doped, the photoluminescence (PL) and LPL colors change from blue to green with their intensities significantly enhanced. The doping of Zn2+ evidently improves the PL and LPL performances of the Ca3Ga4O9 matrix and Ca3Ga4O9:Tb3+. The thermoluminescence (TL) spectra show that a successive trap distribution is formed by multiple intrinsic traps with different depths in the Ca3Ga4O9 matrix, and the incorporation of Tb3+ and Zn2+ effectively increases the densities of these intrinsic traps. The existence of a successive trap distribution makes the Ca3Ga4O9:Tb3+/Zn2+ phosphor exhibit thermally stable PL and LPL. It is indicated that this phosphor shows great promise for the application such as high-temperature LPL phosphor.  相似文献   

6.
In order to obtain a single-host-white-light phosphor,a series of Ba1.8-w-x-y-zSrwLi0.4-xCexEuyMnzSiO4(BSLS:Ce3+,Eu2+,Mn2+)powder samples were synthesized via high temperature solid-state reaction.The structure and photoluminescence properties were investigated.Under ultraviolet excitation,the emission spectra contained three bands:the 370-470 nm blue band,the 470-570 nm green band and the 570-700 nm red band,which arose from the 5d→4f transitions of Ce3+ and Eu2+,and the 4T1→6A1 transition of Mn2+,respectively.The excitation spectra of the emissions of Ce3+ and Mn2+ ions showed the energy transfer from Ce3+ to Mn2+.White light emission was obtained from the tri-doped samples of appropriate doping concentration under 310-360 nm excitation.  相似文献   

7.
A novel orange-red emitting Ba3Y4O9:Sm3+ phosphors were prepared by a high temperature solid-state reaction in air. X-ray diffraction (XRD), photoluminescence spectra, fluorescence decay and temperature-dependent emission spectra were utilized to characterize the structure and luminescence properties. The results show that the excitation spectrum includes a series of linear peaks at 350, 367, 382, 410, 424, 445, 470 and 495 nm, respectively. Under 410 nm excitation, the emission peaks were located at 574 nm (4G5/26H5/2), 608 nm (4G5/26H7/2), 659 nm (4G5/26H9/2) and 722 nm (4G5/26H11/2), respectively. The concentration quenching occurs when x equals 0.08 for Ba3Y4–xO9:xSm3+ phosphor and its mechanism is ascribed to the dipole–dipole interaction. The chromaticity coordinates of Ba3Y3.92O9:0.08Sm3+ phosphor are in the orange-red region. The temperature-dependent study shows that this phosphor has excellent luminescence thermal-stability. And the luminescence intensity of Ba3Y3.92O9:0.08Sm3+ phosphor at 473 K only declines by about 25.75% of its initial intensity. The experimental data indicate that Ba3Y4O9:Sm3+ phosphor may be promising as an orange-red emitting phosphor for white light emitting diodes.  相似文献   

8.
A series of Tb~(3+) and Eu~(3+) co-doped NaY(WO_4)_2 phosphors were synthesized by hydrothermal reactions.The crystal structure,morphology,upconversion luminescent properties,the energy transfer from Tb~(3+) to Eu~(3+)ions and the ~5 D_4→ ~7 F_5 transition of the Tb~(3+) ion in NaY(WO_4)_2:Tb~(3+),Eu~(3+) phosphors were investigated in details.The results indicate that all the synthesized samples are of pure tetragonal phase NaY(WO_4)2.Furthermore,the micrometer-sized needle spheres and excellent dispersion of the particles are obtained by adding polyethylene glycol(PEG-2000) as the surfactant.Phosphors of NaY(WO_4)_2:Tb~(3+),Eu~(3+) exhibit the492 nm blue emission peak,546 nm green emission peak,595 nm orange emission peak and 616 nm red emission peak under 790 nm excitation.The energy transfer from Tb~(3+) to Eu~(3+) is a resonant transfer,in which electric dipole-dipole interaction plays a leading role.By adjusting the doping concentration of Eu~(3+) in NaY(WO_4)_2: 1.0 mol%Tb~(3+),xmol%Eu~(3+) phosphors,the emitting color of UC phosphors can be tuned from green to red.  相似文献   

9.
The cerium (Ce3+) doped yttrium aluminium borate (YAB) phosphor was synthesized by modified solid state reaction. The phosphor's phase purity and its emission properties were studied using powder X-ray diffraction pattern and photoluminescence spectroscopy. The synthesized YAB had rhomobohedral crystal structure. The phosphor had two different excitation and emission spectra. By 325 nm excitation, the phosphor had emission at 373 nm and with 363 nm excitation; the phosphor gave violet-blue emission at 418 nm. The UV emission of the phosphor originated due to Ce3+ ions at the yttrium site and violet-blue emission owing to Ce3+ ions at non-regular sites viz., A13+ and interstitial sites. The emission intensity of the phosphor was enhanced when monovalent ions (K+, Na+, and F) were added as co-dopants. The crucial role of ionic radii of monovalent co-dopants on the emission enhancement of the YAB:Ce3+ phosphor was reported. Thermogravimetric study showed that the YAB possessed high thermal stability at up to 900 ℃.  相似文献   

10.
Multi-color luminescence basing on amorphous Eu~(3+)/Tb~(3+) co-doped Zn-Al hydroxides and their annealed samples were studied in detail. Results suggest that excellent red emissions due to Eu~(3+) and green emissions attributed to Tb~(3+) appear under the excitation of favorable wavelength for all the asprepared amorphous samples. Moreover, the emission intensity depends on the Eu~(3+)/Tb~(3+) molar ratio. The samples annealed at 300, 500, and 700 ℃ still exhibit amorphous state,and multi-color luminescence kept in the samples annealed at 300 ℃, while luminescence quenched for the samples annealed at 500 and 700 ℃. However, a broad emission ranging from 450 to 650 nm occurs in some samples annealed at 900 ℃. Further, the fluorescence decay and lifetimes for the as-prepared samples and the samples annealed at 300 ℃ were investigated. It is found that all the decay curves of emissions due to Tb~(3+) and Eu~(3+) present characteristic double exponential function despite their different lifetimes.The present work may be a good example for developing new multi-color even white light emitting materials.  相似文献   

11.
A single-phase full-color emitting phosphor Sr2Ca2La(PO4)3O:Eu2+,Tb3+,Mn2+ was synthesized by the high temperature solid-state method. The phase formation, luminescence properties, thermal stability, and energy transfer from Eu2+ to Tb3+ and Eu2+ to Mn2+ in Sr2Ca2La(PO4)3O were investigated in details. Tunable emission color from blue to blueish green or orange can be observed under 365 nm near-ultraviolet excitation based on the energy transfer from Eu2+ to Tb3+ or Mn2+ ions by varying the ratio of Eu2+/Tb3+ or Eu2+/Mn2+ ions. White light was obtained with chromaticity coordinates of (0.3558, 0.3500) in the Sr2Ca2La(PO4)3O:0.04Eu2+,0.08Tb3+,0.40Mn2+ phosphor, suggesting their potential applications in white light emitting diodes.  相似文献   

12.
A novel white-light emitting single-phase phosphor La3Si6N11:Dy3+, exhibiting two emission peaks centering at 475 and 575 nm, was prepared via conventional solid-state reactions. The structure and morphology of La3Si6N11:Dy3+/Tb3+ were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The emission colors can be tuned from white to yellow-green through increasing the Tb3+ concentration in La3Si6N11:Dy3+,Tb3+. The mechanism of energy transfer (ET) from Dy3+ to Tb3+ is confirmed according to the excitation, emission spectra and decay lifetimes curve. The temperature-dependent luminescence measurements of La2.83Si6N11:0.1Dy3+,0.07Tb3+ were also performed, and a good thermal stability is shown, suggesting superior properties for the application as white light-emitting diodes (w-LEDs) phosphor.  相似文献   

13.
Eu~(3+) activated and Eu~(3+), Tb~(3+) co-activated monodisperse sodium double tungstates NaGd(WO4)2 phosphors were prepared by molten salt method at 750 ℃ for 10 h using NaCl as a flux. The crystal structure and morphology of the as-synthesized phosphors were measured by XRD and SEM, respectively. The photoluminescence properties were characterized by PL spectra, decay lifetime and CIE. The presence of NaCl plays an important role in the morphology and luminescence properties. In this work,NaCl and one of the raw material Na_2 CO_3 in a certain proportion will form a low eutectic salt to decrease the reaction temperature and benefit the formation of monodisperse NaGd(WO_4)_2 crystals. The color of Eu~(3+) and Tb~(3+) co-doped NaGd(WO_4)_2 phosphors can be tuned from creamy white to orange, red and green by adjusting the doping concentration of rare earth ions, since the emission contain the broad blue-green emission origin from NaGd(WO_4)_2 host and characteristic red and green emission origin from Eu~(3+) and Tb~(3+) ions. The electroluminescent spectra and CIE measurement shows that the LED device with NaGd_((1-x))(WO_4)_2:xEu~(3+)(x = 0.24) phosphor can be excited by 365 nm and 380 nm LED chip, and their CIE coordinate is(x = 0.45, y = 0.45) and(x = 0.36, y = 0.37), Ra is 80.3 and 86.3, T_c is 3196 and4556 K, respectively. As a single-component phosphor, NaGd(WO_4)_2:Eu~(3+),Tb~(3+) have potential application in UV-pumped WLEDs.  相似文献   

14.
BaAl12O19:Tb,Ce phosphors were prepared by sol-gel technique, the crystalline structures of samples characterized by XRD, and the luminescence properties and energy transfer between Ce3+ and Tb3+ were investigated. The results indicated that the emission intensity and the excitation wavelength range of Tb3+ increased when Ce3+ was doped. It demonstrated that the Ce3+ added in the BaAl12O19:Tb could deliver energy to Tb3+, and Ce3+ was not luminous by itself. The relative emission intensity of Tb3+ at wavelength of 548 nm was the strongest by Tb3+/Ce3+ ratio of 2:1, when excited at 310 nm, which was the characteristic adsorption wavelength of Ce3+.  相似文献   

15.
At present,the rare earth(RE) ions doped phosphors have attracted more and more attention because of their excellent properties.In this paper,a series of novel blue-purple β-Ca_3(PO_4)_2:Ce~(3+) phosphors were synthesized by a high temperature solid phase method.The X-ray diffraction(XRD),infrared spectrum,energy dispersive spectroscopy(EDS),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),photoluminescence excitation and emission spectra were used to investigate the crystal structure,composition and the luminescent properties of the resulting samples.The phosphor shows a strong absorption in the ultraviolet band.Under the excitation of 269 nm,the phosphor emits a strong purple fluorescence ranging from 360 to 520 nm.When Ce~(3+) doping content is 0.07 mol,the strongest luminescence intensity is reached,and the concentration quenching mechanism is dipole-dipole(d-d)interaction for Ce~(3+) based on Dexter theory.  相似文献   

16.
Ce3+/Dy3+/Tb3+/Eu3+/Mn2+ and Cr3+ ions co-doped Zn3Al2Ge2O10 phosphor were prepared by a high-temperature solid-state method. X-ray diffraction patterns prove the cubic phase structure of prepared Zn3Al2Ge2O10 phosphor. Emission, excitation spectra and decay curves confirm the tunable luminescence. Different degrees of the decrease of emission FWHM in Zn3Al2Ge2O10:0.02Cr3+,RE (RE = Ce3+, Dy3+, Tb3+, Eu3+) and Zn3Al2Ge2O10:0.02Cr3+,Mn2+ are observed. The reason of variable FWHM is the effect of crystal field splitting and nephelauxetic effect, and the nephelauxetic effect is dominant. Therefore, the emission FWHM decreases with the increasing concentration of Mn2+/Tb3+/Eu3+ in Zn3Al2Ge2O10:0.02Cr3+, and for Zn3Al2Ge2O10:0.02Cr3+,Ce3+ and Zn3Al2Ge2O10:0.02Cr3+,Dy3+, it is a constant. The variation of Zn3Al2Ge2O10:0.02Cr3+,Tb3+ is more obvious than that of Zn3Al2Ge2O10:0.02Cr3+,Eu3+, because Tb3+ ion has smaller electronegativity. Thus, the tunable luminescence of Cr3+ can be realized by co-doping different ions. And these phosphors have potential applications in light-emitting diodes for plant growth.  相似文献   

17.
Rare earth ions doped gadolinium oxybromide phosphors GdOBr:RE3+ (RE=Eu, Tb, Ce) were synthesized by the method of solid-state reaction at high temperature, and the VUV-VIS spectroscopic properties of the phosphors were systematically investigated. Under the excitation of VUV or UV source, the phosphors doped with Eu3+ and Tb3+ show a bright and sharp emission at around 620 nm corresponding to the forced electric dipole 5D07F2 transition of Eu3+, and at around 544 nm corresponding to the 5D47F5 transition of Tb3+, respectively. For GdOBr:Ce3+, a broader and intense emission spanned 370–500 nm corresponding to the d-f transition of Ce3+ was observed. The excitation spectra were also analyzed.  相似文献   

18.
CaTiO3:Eu3+ red phosphors were prepared using H3BO3 assisted solid state synthesis. The structure and morphology of the obtained sample were observed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). And the luminescence property was measured using photoluminescence excitation (PLE) and photoluminescence (PL) spectra, respectively. In the excitation spectra, main excitation peaks of the prepared samples were centered at 397 and 465 nm, revealing that these phosphors could be excited by commercial GaN- and InGaN-typed light emitting diodes (LEDs). Dominant emission peaks of the phosphors were located at 616 nm, owing to the transition of 5D07F2 of Eu3+. In the optimum condition, CaTiO3:3%Eu3+ phosphor was obtained at a sintering temperature of 1200 °C in air with a content of 20 mol.% H3BO3 addition. When excited by 397 nm irradiation, the PL intensity of as-prepared red phosphor was 2.2 times higher than that of samples obtained by traditional solid state synthesis, while the PL intensity was 3 times higher than that excited by 465 nm irradiation. The added H3BO3 improved the crystallinity, and increased the color purity, implying the potential to be a promising red phosphor in white light emitting diodes (WLEDs).  相似文献   

19.
White light-emitting diodes (WLEDs) fabricated by single-phase full color emitting phosphor are an emerging solution for health lighting. The crystallographic site occupation of activators in a proper host lattice is crucial for sophisticated design of such phosphor. Here, we report a high quality white light-emitting phosphor Ba2Ca(BO3)2:Ce3+(K+),Eu2+,Mn2+ with spectral distribution covering whole visible region. Blue light emission originates from Ce3+ ions occupying preferentially Ba2+ site by controlling synthesis conditions. Green and red lights are obtained from Eu2+ occupying Ba2+ (and Ca2+) site and Mn2+ occupying Ca2+ site, respectively. In this triple-doped phosphor, strong red emission with a low concentration of Mn2+ is realized by the efficient energy transfer from Ce3+ and Eu2+ to Mn2+. Furthermore, high quality white light is accomplished by properly tuning the relative doping amount of Ce3+(K+)/Eu2+/Mn2+ based on efficient simultaneous energy transfer. The results indicate that Ba2Ca(BO3)2:Ce3+(K+),Eu2+,Mn2+ is a promising white light-emitting phosphor in WLEDs application.  相似文献   

20.
Rare earth (RE) pentaborates, both α- and β-polymorphs, are good candidates for photoluminescent hosts suitable for various RE activators. Ce3+ acts not only as an activator itself, but also as a sensitizer to other rare earth activators, like in the case of commercial green phosphor CeMgAl11O19:Tb3+. In this work, two solid solutions of β-La0.9–xCe0.1TbxB5O9 (0 ≤ x ≤ 0.15) and β-La0.9–yCe0.1DyyB5O9 (0 ≤ y ≤ 0.07) were prepared by sol–gel method with high crystallinity, and the phase purity was confirmed with careful analyses on powder X-ray diffraction patterns. Energy transfers are expected due to the overlapping of Ce3+ emission with the Tb3+/Dy3+ excitation. Indeed, the steady photoluminescence spectra indicate the decrease of the Ce3+ emission and the increase of the Tb3+/Dy3+ emission, and the fluorescence decay curves exhibit the decrease of the average lifetime of Ce3+. The energy transfer efficiency is estimated to be 60% at x = 0.15 and 55% at y = 0.07, respectively. The mechanism is likely through the dipole–dipole electric interactions for both cases. With this rationale, the Tb3+ and Dy3+ emissions are greatly enhanced, in particular, the white emission of Dy3+ in β-La0.85Ce0.1Dy0.05B5O9 is enhanced by 20 times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号