首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this paper is to investigate the tribological properties of a novel iron-copper-graphite (Fe–Cu–C) based self lubricating material at high temperature. The effect of Calcium fluoride (CaF2) as a solid lubricant on friction and wear behavior of sintered Fe–Cu–C materials has been studied. Fe–Cu–C based self-lubricating materials were prepared by single stage compaction and sintering process. CaF2 was added to Fe–2Cu–0.8C based materials in different weight percentages of 0, 3, 6, 9, and 12 wt%. The developed materials were tested for mechanical and tribological properties at high temperature (500 °C). The worn out surfaces were analyzed using a scanning electron microscope. The material with 3 wt% CaF2 exhibited high hardness value where as compression strength of the materials decreased with the addition of CaF2. Samples with 3, 6, and 9 wt% exhibited low value of coefficient of friction (COF) than base matrix. The material with 3 wt% CaF2 addition exhibited better wear resistance as compared to other developed materials. The worn surfaces were mostly characterized by delaminating and abrasive wear. A high temperature solid lubricant CaF2 was used in Fe–Cu–C based matrix and, the developed composites were tested for tribological properties at high temperature. The results showed that addition of CaF2 in Fe–Cu–C improved the friction and wear properties. Based upon the findings, the developed material could be used for antifriction applications.  相似文献   

2.
In this work, the effect of different speeds on the tribological properties of sintered iron–copper–graphite (Fe–Cu–C) based self lubricating composites have been studied. Fe–Cu–C based self-lubricating composites were prepared by powder metallurgical compaction and sintering method. CaF2, a solid lubricant in weight percentages of 0, 3, 6, 9 and 12 was added to the base matrix consisting of Fe-2Cu-0.8C. The fabricated samples were tested for friction and wear at a constant load of 10 N and three different speeds of 0.5, 5 and 10 m/s. The surface properties of unworn and worn surfaces were analyzed using optical and scanning electron microscope. The friction and wear test of the composites exhibited decrease in coefficient of friction and increase in wear loss with the increase in speed. The results also revealed different trends in the friction behavior of the developed composites at low (0.5 m/s) and high speeds(5 and 10 m/s). However, at all test speeds, COF of samples with 3, 6 and 9 wt.% was less than the base matrix, and wear loss of 3 wt.% CaF2 sample was the lowest at all speeds. Ploughing, adhesive and delamination wear were the dominant wear mechanism as revealed by SEM. Based upon the findings, the developed material could be used for low and high speed antifriction applications.  相似文献   

3.
The dispersion of a softer phase in a metallic matrix reduces the coefficient of friction (COF), often at the expense of an increased wear rate at the tribological contact. To address this issue, unlubricated fretting wear tests were performed on spark plasma sintered Cu-Pb nanocomposites against bearing steel. The sintering temperature and the Pb content as well as the fretting parameters were judiciously selected and varied to investigate the role of microstructure (grain size, second-phase content) on the wear resistance properties of Cu-Pb nanocomposites. A combination of the lowest wear rate (~1.5 × 10?6 mm3/Nm) and a modest COF (~0.4) was achieved for Cu-15 wt pct Pb nanocomposites. The lower wear rate of Cu-Pb nanocomposites with respect to unreinforced Cu is attributed to high hardness (~2 to 3.5 GPa) of the matrix, Cu2O/Fe2O3-rich oxide layer formation at tribological interface, and exuding of softer Pb particles. The wear properties are discussed in reference to the characteristics of transfer layer on worn surface as well as subsurface damage probed using focused ion beam microscopy. Interestingly, the flash temperature has been found to have insignificant effect on the observed oxidative wear, and alternative mechanisms are proposed. Importantly, the wear resistance properties of the nanocomposites reveal a weak Hall–Petch-like relationship with grain size of nanocrystalline Cu.  相似文献   

4.
Zn and Zn–Ni alloy coatings were electrodeposited on mild steel from sulfate-based bath containing Sn as additive. The effect of Ni content on the microstructure, morphology, microhardness and the tribological behavior of these coatings were studied and discussed. Adding Sn in the sulfate bath had a significant effect on the surface morphology, particularly on the Zn–8 wt% Ni coatings. By increasing the Ni concentration from 8 to 14 wt%, the X-ray patterns showed that the phase structure of Zn–Ni alloy coatings was changed from η-phase Ni3Zn22 to γ-phase Ni5Zn21. The plastic deformation and delamination were found to be wear mechanisms for the investigated coatings. While the Zn–14 wt% Ni alloys had the best wear resistance, Zn films had the most severe wear volume loss and the highest friction coefficient.  相似文献   

5.
A series of Co/CeO2 (25 nm) nanocomposite coating materials by electrodeposition were successfully prepared containing different cerium oxide composition in the cobalt-plating bath. Stainless steel (304L) was used as support material for nanocomposite coatings. The nano-CeOis uniformly incorporated into cobalt matrix, and the effect on surface morphologies was identified by scanning electron microscopy with energy-dispersive X-ray analysis. Codeposition of nano-CeOparticles with cobalt disturbs the regular surface morphology of the cobalt coatings. It should be noted that the as-prepared Co/CeOnanocomposite coatings were found to be much superior in corrosion resistance over those of pure cobalt coatings materials based on a series of electrochemical impedance spectroscopy measurements in simulating body fluid solution. With increase in the nano-CeOparticles concentration in the cobalt electrolyte, it is observed that the corrosion resistance of Co/CeOincreases. Co/CeOnanocomposite coatings have higher polarization resistance as compared with pure cobalt layers in simulating body fluid solution.  相似文献   

6.
In this study, novel Al6061–SiC nanocomposites and Al6061–SiC–Gr hybrid nanocomposites were fabricated by ultrasonic cavitation method by adding silicon carbide (SiC) of 0.8 and 1.6% and graphite (Gr) of 0.5 and 1.0% by weight basis for each casting. A Three-level Box–Behnken design of experiment was developed using response surface methodology. Dry sliding wear tests were performed as per the experimental design using a pin-on disc set-up at room temperature. Analysis of variance (ANOVA) was applied to investigate the influence of process parameters viz., load, sliding distance, wt% reinforcement and their interactions on specific wear rate and coefficient of friction. Further, a mathematical model was formulated by applying response surface method in order to estimate the tribology characteristics such as wear and COF of the hybrid nanocomposites. The specific wear rate and coefficient of friction were significantly influenced by % of SiC followed by % of Gr, load and sliding distance. The wear test parameters were optimized for minimizing specific wear rate and COF using desirability function approach. A set of optimum parameter of combination for AMMNC was identified as: SiC 1.36wt%; Gr 0.63 wt%; load 35.65 N and sliding distance 2848 m with specific wear rate of 0.517 g/N-m; coefficient of friction 0.181. The AFM image of Al6061–1.36SiC–0.63Gr hybrid nanocomposite at optimized condition confirmed the improvement in the wear surface smoothness of the hybrid nanocomposite compared to Al6061–SiC nanocomposites.  相似文献   

7.
Surface A356 aluminum alloy matrix composites containing micro and nanosized Al2O3 are prepared by a new approach utilizing high-velocity oxy-fuel spraying and friction stir processing (FSP). Optical and scanning electron microscopy, microhardness, and wear tests were used to characterize the surface composites. Results indicated that, the presence of Al2O3 in matrix can improve the mechanical properties of specimens. The microhardness of surface composites containing micro and nanosized Al2O3 were 89.8 ± 2.6 HV and 109.7 ± 2.5 HV, respectively, which were higher than those for the as-received (79.6 ± 1.1 HV) and the FSPed A356-T6 with no alumina powder (66.8 ± 0.9 HV). Surface composites revealed low friction coefficients and wear rates, which were significantly lower than those obtained for substrate. The wear mass losses of the as-received, the FSPed, and surface micro and nanocomposite specimens after 500-m sliding distance were 50.5, 55.6, 31, and 17.2 mg, respectively. Scanning electron microscopy tests revealed different wear mechanisms on the surface of the wear test specimens.  相似文献   

8.
In the present paper an attempt is made to establish a response surface methodology based non-linear mathematical model for the friction–wear behaviour of as cast and heat-treated Al6061/9%Gr/WC (with WC at 1, 2 and 3 wt%) metal matrix composites (MMCs). During experimentation, the process parameters, namely percentage of WC, load, sliding distance and sliding velocity have been considered as inputs and wear loss (WL) and coefficient of friction (COF) have been treated as the responses. Results reveal that, for as-cast Al6061/9%Gr/WC hybrid composites, the WL decreases with increase in percentage of WC and increases with the increase in load, sliding distance and sliding velocity. Moreover, COF decreases with increase in percentage of WC and sliding velocity and increases with increase in the load and sliding distance. It has also been observed that the WL and COF of heat treated composites are found to be less than the as cast MMCs. Further, fuzzy grey relational analysis (GRA) has been used to perform the multi objective optimization of the said wear process. Finally, the evidence of wear phenomenon for the said composites have been examined with the help of scanning electron microscopy.  相似文献   

9.
This work describes the tribological properties of mono AA6061-10 wt% B4C and hybrid AA6061-10 wt% B4C-7.5 wt% Gr composites which could be used as a potential substitute for aluminum alloys used in automotive engines. The tribological experiments are performed as per the experimental scheme designed using full factorial design. The results suggest that the wear loss increases with applied load and sliding distance and the friction coefficient increases with increase in applied load. Further, the ANOVA analysis reveals the statistically and physically significant factors which influence the wear loss and friction coefficient. Formation of Gr-rich tribolayer causes reduction in the wear loss and friction coefficient for hybrid composites compared to the mono ones.  相似文献   

10.
In this paper, we show that duplex surface treatment, combining oxygen diffusion hardening with the subsequent deposition of thick, low-friction nanocomposite nc-MeC/a-C coatings to improve the tribological properties of the Ti-6Al-4V alloy. We have synthesized, in a magnetron sputtering process, the nanocomposite nc-MeC/a-C coatings (where Me denotes W or Ti transition metal) consisting of two dissimilar materials (nanocrystallites of transition metal carbides MeC and an amorphous carbon matrix a-C). The nano and microstructure of the substrate material and coatings were examined with the use of scanning and transmission electron microscopy as well as by X-ray diffractometry. It was found that different carbide nanocrystals of the same transition metal were embedded in an amorphous carbon matrix of both coatings. The HRTEM analysis indicated that the volume fraction of tungsten carbides in the nc-WC/a-C coating was equal to 13 pct, whereas in the nc-TiC/a-C one the volume fraction of the titanium carbides was equal to just 3 pct. The tribological properties, hardness, and scratch resistance of the coatings were investigated as well. The coefficient of friction (COF) of the coatings during dry sliding against 6 mm diameter alumina ball reached very low value, 0.05, in comparison with an oxygen-hardened alloy, whose COF was equal to 0.8. This low-friction effect of the coatings has been attributed to the formation of a self-lubricating film in sliding contact. The coatings exhibited similar failure morphology in the scratch tests. Even though the hardness was rather low, the coatings exhibited a very good wear resistance during sliding friction. The wear rate of the nc-WC/a-C coating was equal to 0.08 × 10?6 mm3 N?1 m?1 and for the nc-TiC/a-C one it was 0.28 × 10?6 mm3 N?1 m?1.  相似文献   

11.
Two-body abrasive wear resistance of 7075 Al-alloy reinforced with 20 wt% Al2O3 particles has been studied with reference to unreinforced base alloy by design of experimental technique. Taguchi L9 orthogonal array and analysis of variance techniques considering four factors, i.e., load, size of SiC abrasive particle, velocity and sliding distance, each at three different levels, have been employed. The experimental results reveal that wear resistance of composite is far superior than that of the unreinforced base alloy under any given test condition. In general, the most dominating factor is found to be the size of abrasive particle followed by load for both base alloy and composite. The confirmation tests reveal the accuracy level ±?5.52 and ±?6.06% for base alloy and composite, respectively. Mechanism of abrasive wear and the difference of wear response of base alloy and composite are discussed via characterizations of worn surface and generated wear debris.  相似文献   

12.
The effects of nano particles on double shear strength and tribological properties of A356 alloy reinforced with Al2O3 nano particles of size 30 nm were investigated. The percentage inclusions of Al2O3 were varied from 0.5 to 1.5 wt%. The particles were added with stirring at 400 rpm and squeeze casting at 750 °C and pressure of 600 MPa in a squeeze casting machine. Comparison of the performance of as cast samples of A356/Al2O3 nano composite was conducted. The tribological properties of the samples were also investigated by pin-on-disk tests at 10, 30 and 50 N load, sliding speed 0.534 m/s and sliding distance 1100 m in dry condition. SEM images of microstructure analysis of the composite, Al2O3 (0.5 and 1 %) particles were well dispersed in the A356 alloy matrix. Partial agglomeration was observed in metal matrix composite with higher (1.5 %) Al2O3 particle contents. The nano dispersed composites containing 0.5 and 1 wt% of Al2O3 nano particles exhibited the highest double shear strength, lesser wear loss and coefficient of friction.  相似文献   

13.
ZA-27 alloy is a lightest alloy which offers excellent bearing and mechanical properties in automobile and industrial applications. In this study, the MoS2 particles with 0.5, 1 and 1.5 (wt%) weight percentages were reinforced in ZA-27 alloy to form composites, which were fabricated by using ultrasonic assisted stir casting method. The ZA-27/MoS2 composite specimens were examined for chemical composition with the aid of XRD technique and EDS. Microstructure analysis of the ZA-27/MoS2 composites was studied using SEM. Tests were conducted for mechanical properties such as tensile strength and hardness on ZA-27/MoS2 composites samples as per ASTM standards. Dry sliding wear behavior of the composites was tested at various operating conditions by using pin-on-disc apparatus. Microstructural images of the ZA-27 composites reveal that there is a uniform dispersion of the MoS2 particles in the base material. From the results it is observed that the mechanical properties increases with ZA-27 reinforced with 0.5 wt% MoS2 composite and further decreases with increase in the filler content. The enhanced wear resistance is observed in ZA-27 reinforced MoS2 composites as compared to the unreinforced alloy. The wear rate of the ZA-27 composites decreases with the increase in filler content, further the worn surfaces as examined using SEM reveals the wear mechanism explaining the improved wear resistance of the particulate composites.  相似文献   

14.
Aluminum 7075 is an aerospace alloy that has high strength to weight ratio and used most commonly in aeronautic structures. However, low surface properties such as poor wear resistance and surface hardness are the main weaknesses that limit its application in other areas of manufacturing. In the present work an attempt was made to fabricate aluminum based surface nano-composite reinforced with carbon nano tube (CNT) by means of single pass friction stir processing. Firstly, Microstructural evolution, tensile properties, hardness, wear rate and friction coefficient of fabricated surface composite was compared with pure friction stir processed metal and base material. Hereafter, parametric study based on response surface methodology was carried out to find the effect of tool rotary speed, feed rate and amount of MWCNT on tensile strength and wear rate. Optimization based on desirability approach function was also performed to find optimal parameter setting achieving maximum strength and minimum wear rate, simultaneously. The results revealed that the CNT particles significantly homogenized the microstructure of the composite, enhanced tensile properties and hardness and reduced the wear rate and friction coefficient in sliding test. By performing optimization through RSM, it was found that selection of 1250 RPM tool rotary speed, 40 mm/min feed rate and 0.6 g CNT weight caused 20% improvement in tensile strength and wear rate of fabricated composite when compared with base material.  相似文献   

15.
16.
EffectofFluoridesandCeriumDioxideAdditivesonEPandAntiwearPerformanceofGreaseLianYafeng(连亚锋)(GuangzhouMachineToolResearchInsti...  相似文献   

17.
为研究金属橡胶用选择性激光熔融(SLM)技术制备的316L不锈钢细丝在脂润滑条件下的摩擦磨损性能,探讨了不同载荷、不同摩擦速度以及载荷(F)和摩擦速度(v)共同作用的Fv因子对SLM-316L细丝摩擦系数和磨损率的影响规律,利用扫描电镜观察细丝磨损表面形貌,利用能谱仪(EDS)检测磨损表面元素种类与原子分数,分析其磨损机制。结果表明:在脂润滑条件下,摩擦系数随着载荷的增大而减小,磨损率随载荷的增大呈先降后升的趋势。摩擦系数和磨损率均随摩擦速度的增大呈先升后降趋势。低载荷下SLM-316L细丝磨损机制主要为磨粒磨损和轻微的氧化磨损,较高载荷下氧化磨损加剧并伴随疲劳磨损。低摩擦速度下SLM-316L细丝磨损机制主要为疲劳磨损和氧化磨损,较高摩擦速度下氧化磨损减弱,以磨粒磨损为主。摩擦系数随Fv值的增大而减小,磨损率随Fv值的增大呈先升后降再升的变化趋势。因此用SLM-316L细丝制备的金属橡胶在脂润滑条件下最佳工作参数:Fv等于0.04 N?m?s?1,即载荷10 N、摩擦速度240 mm?min?1。   相似文献   

18.
19.
Centrifugal casting was adopted for fabricating AlSi5Cu3/10 wt% SiC functionally graded metal matrix composite under three different centrifugal speeds of 800, 1000 and 1200 rpm, and hollow cylindrical components (φout 150 × φin 132 × 150 mm) were obtained. Microstructures of outer and inner periphery of all composites were observed through optical microscope and micro hardness of outer, intermediate and inner region of composite was tested using Vicker’s hardness tester. Results revealed that outer region of the composites centrifuged at all speeds have particle rich region with higher hardness. Abrasive wear experiments were conducted only on surface of particle rich region based on Taguchi’s technique by varying parameters such as centrifugal speed of casting process, rotating speed and applied load of abrasive wear tester. Analysis of variance results revealed that, centrifugal speed had highest significance on wear rate. Abraded surfaces were examined using scanning electron microscope and the maximum wear resistance was observed on particle rich zone of composite centrifuged at 1200 rpm.  相似文献   

20.
CuSn powders and TiH2 powders were milled using high energy mechanical milling to prepare Cu-based alloy powders for brazing diamond. And Ce was added to the milled Cu-based alloy powders to improve the wettability. It is found that the wetting angle reaches the minimum value 13.2° and the maximum spreading area 178 mm2 is achieved when the amount of Ce is 0.75 wt%. And Ce remarkably reduces the surface tension of liquid alloy, which improves the climbing height along the diamond and forms a massive support profile. And the results show that Ce can effectively improve the transverse rupture strength (TRS) due to high wettability. The wear characteristics of the diamonds brazed with Cu-based alloy containing 0.75 wt% Ce mainly consist of integrity, micro-fracture, fracture and rubdown, diamonds pull-out can not easily happen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号