首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Abstract

In the present investigation, the microstructure and mechanical characteristics of dissimilar A319 and A356 cast Al alloys plates joined by friction stir welding (FSW) were evaluated. The effect of tool rotational and welding speeds as well as the post-weld heat treatment (PWHT) on such properties was investigated. Post-weld heat treatment was carried out at a solutionising temperature of 540°C for 12 h followed by aging at 155°C for 6 h. For the as welded specimens, the welded zone (WZ) exhibited higher hardness values when compared with the A319 and A356 parent alloys. The peak hardness at the WZ was found to increase by increasing the tool rotational speed and/or reducing the welding speed. In contrast, the post-weld heat treated (PWHTed) specimens exhibited lower hardness values at the WZ than the parent alloys. For PWHTed specimens, the peak hardness at the WZ was found to decrease by increasing the tool rotational speed and/or reducing the welding speed. Tensile tests results demonstrate that, for the as welded specimens, the tensile fracture took place on A356 side where the hardness was minimal. While for PWHTed specimens, the fracture took place at the WZ. Increasing the tool rotational speed reducing both tensile and yield strengths, but increases the ductility of the joint.  相似文献   

2.
Among advanced manufacturing processes of metal matrix composite parts, thixoforging is one of the most effective forming processes. The investigation of this research article is to provide the proper conditions such as the die shape, the forging velocity, the forging time, the forging pressure, and reinforcement content in the thixoforming process for fabricating hollow shape parts. To investigate the effect of injection velocity and pressure on various defects in thixoforged cylinder liners, filling tests were performed by MAGMA S/W. In order to evaluate the effectiveness of calculated conditions, which are given by computer-aided engineering, A380 and SiCp/A380 cylinder liners were fabricated under the calculated conditions. SiCp/A380 composite billets were fabricated by both the mechanical stirring and electro-magnetic stirring processes. In the case of SiCp/A380 composite cylinder liners, the effect of reinforcement (SiCp) distribution, content (10-20 vol.%) and size (5.5-14 μm) on the mechanical properties was investigated.  相似文献   

3.
采用半固态等温热处理法、近液相线模锻法和等通道角挤压法制备AZ91D—Y镁合金半固态坯料。分别将3种状态的坯料加热到半固态温度区间进行二次重熔后,进行了触变模锻成形。结果表明,在半固态温度为560℃,模锻压力为200MPa的条件下,半固态等温热处理法、近液相线模锻法和等通道角挤压法制备坯料分别保温30,20,15min后触变模锻获得最佳力学性能;随着坯料加热温度的升高,触变模锻成形件力学性能呈现先上升后下降的趋势;增加成形压力有利于触变模锻成形件力学性能的提高;在相同成形条件下,等通道角挤压法制备坯料触变模锻后的力学性能最好,近液相线模锻法次之,半固态等温热处理法较差。  相似文献   

4.
The mechanical properties (σb,σ0.2,and δ) and fracture behavior of tensile specimens of the refined A356 alloys were investigated as a function of the addition level of Al-Ti-B master alloy under both as-cast and T6 heat-treated conditions. The results show that as the addition level of Al-5Ti-1B master alloy increases from 0.1 wt.% to 5.0 wt.%,the mechanical properties of refined A356 alloys improve steadily and then decrease slightly under both as-cast and T6 heat-treated conditions. Also,they display exc...  相似文献   

5.
7 A04合金半固态触变模锻的组织演化   总被引:1,自引:1,他引:0  
研究了SIMA法制备的7A04合金在半固态触变模锻工艺中的组织演化规律.结果表明:在半固态重熔加热过程中,随着加热温度的升高和保温时间的延长,晶粒逐渐球化和长大,且加热温度对重熔加热组织的影响比保温时间大;当将具有此特征的坯料进行半固态触变模锻后,其获得的触变模锻件的显微组织与半固态重熔组织密切相关.当模锻温度达到600℃以上时,模锻件的显微组织变化不大,仍是均匀的近球形的显微组织,而且模锻件各区域的合金成分基本一致.揭示了采用半固态触变模锻工艺可获得形状复杂的高质量制件.  相似文献   

6.
A356/Al2O3 surface nanocomposite was produced by friction stir processing (FSP) method. X-ray diffractometery, optical and scanning electron microscopy, microhardness and nanoindentation tests were used to characterize the samples. The results indicated that the uniform distribution of Al2O3 particles in A356 matrix by FSP process can improve the mechanical properties of specimens. The hardness and elastic modulus of the as-received A356, the sample treated by the FSP without Al2O3 particles, surface micro- and nanocomposite specimens were about 75 Hv and 74 GPa, 69 Hv and 73 GPa, 90 Hv and 81 GPa, 110 Hv and 86 GPa, respectively.  相似文献   

7.
热处理对A356铝合金组织结构和力学性能的影响   总被引:2,自引:0,他引:2  
用两种不同的热处理制度对稀土和锶综合细化变质的A356合金进行处理,一种是长时间标准处理制度T6(535℃固溶4h+150℃时效15h),另一种是短时间的热处理制度ST(550℃固溶2h+170℃时效2h)。采用光学显微镜、扫描电镜及室温拉伸实验等手段分析热处理制度对A356合金微观组织和拉伸力学性能的影响。结果表明:在550℃下固溶2h可以获得Mg、Si过饱和且分布均匀的α(Al)固溶体,并使共晶硅相球化;再经170℃人工时效2h后,可以达到传统T6处理的时效析出效果。拉伸实验结果表明,A356铝合金经传统T6处理得到了最高的拉伸强度和断裂伸长率;通过ST短时热处理后,其拉伸强度、屈服强度及伸长率分别可以达到T6处理时的90%,95%和80%。  相似文献   

8.
Due to their high specifc strength and low density, magnesium alloys are widely used in many weight-saving applications. This research is aimed at investigating the microstructure and hardness of commercial AZ63 alloy specimens subjected to two diferent thermomechanical treatments (TMTs). For the first TMT, after solution treated at the temperature of 380 ℃ for 20 h, AZ63 alloy specimens were 5% cold worked by rolling process followed by ageing at the temperatures of 150 ℃ and 250 ℃ for 3, 9 and 25 h. In the second TMT, the specimens were solution treated at the temperature of 380 ℃ for 20 h, underwent 2% cold worked and quenched in water of 0 ℃. Half of the specimens were then 2% cold worked whilst the rest were rolled to 8% cold worked. All the specimens were then aged at the temperatures of 150 ℃ and 250 ℃ for 3, 9 and 25 h. Optical microscope was used to analyze the microstructures of the specimens. Hardness test was too conducted to measure the effect of the treatments on the specimens. Results show that two-step aging enhances the hardness of the specimens due to the distribution of the Beta-phase (Mg17Al12) in the alloy matrix. The results also reveal that, the best hardness from the first TMT was produced by specimen that was pre-aged at 150 ℃ whereas, in the second TMT, aging at 250 ℃ exhibited the best hardness values.  相似文献   

9.
The aim of the study was to evaluate the accuracy of heat treatment guidelines, generally followed in industrial practices, about the T6 heat treatment of A356 aluminum alloy. In particular, the effect of the delay between quenching and artificial aging (pre-aging time) on microstructure, hardness, and tensile behavior was studied using specimens extracted from different locations of a cylinder head, characterized by different cooling rates and, consequently, by different secondary dendrite arm spacing values. Hardness and tensile tests confirmed the detrimental effect of pre-aging with a 20% reduction in hardness and strength after approximately 1 h of pre-aging, both for samples with fine and large SDAS. Differential scanning calorimetry analyses on samples that were solutionized, quenched, and pre-aged between 0 and 96 h, suggested that the nature and composition of the clusters formed during pre-aging, rather than their size, influenced the subsequent precipitation process and the final mechanical properties of the alloy.  相似文献   

10.
研究了锻造态和热处理态不同成分铝基轴承合金在油润滑条件下的摩擦行为,以及材料的硬度、热处理制度和锻造对材料耐磨性的影响。所用材料是 Al-8.5Si-3.5Cu 和 Al-15Pb-3.7Cu-1.5Si-1.1Fe。在锻造过程中,应变范围为10%~20%。并对材料进行T6热处理。在销-盘式磨损试验机上对材料的摩擦性能进行测试。结果表明,锻造过程使材料的硬度得到增加;铸造应变在10%~20%的范围内对材料的摩擦磨损影响不明显。  相似文献   

11.
The semisolid slurry of A356 Al alloy was prepared by indirect ultrasonic vibration (IUV) method and then formed by direct squeeze casting (SC). The effects of squeeze pressure and T6 heat treatment on the microstructure and mechanical properties of rheo-squeeze casting (RSC) A356 Al alloy were investigated. The results indicate that with the increase of squeeze pressure, the average diameter of primary α-Al particles decreased, while the densities and mechanical properties of the samples increased. The effect of T6 heat treatment on the mechanical properties is more significant in RSC samples than in conventional SC samples. The tensile strength and elongation of T6 heat treated RSC samples under 100 MPa pressure are 338 MPa and 8%, respectively.  相似文献   

12.

A systematic study on how Cu content affects the microstructure and mechanical properties of rheo-diecasting Al-6Zn-2Mg-xCu alloys during solution treatment and ageing heat treatment was conducted. The swirled enthalpy equilibrium device (SEED) was adopted to prepare the semi-solid slurry of Al-6Zn-2Mg-xCu alloys. The microstructure development and mechanical properties were studied using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), as well as hardness and tensile testing. The grain boundary and shape factor were calculated using image processing software (Image-Pro Plus 6.0). Results show that the alloys are composed of typical globular primary α-Al grains, eutectic phases, and smaller secondary α-Al grains. After solution and ageing heat treatment, the eutectic phases are dissolved into Al matrix when the Cu content is lower than 1.5wt.%, while some eutectic phases transform into Al2CuMg (S) phases and remain at grain boundaries when Cu content reaches 2wt.%. T6 heat treatment significantly enhances the mechanical properties of rheo-diecasting Al-6Zn-2Mg-xCu alloys. When Cu concentration is 0.5wt.%–1.5wt.%, the ultimate tensile strength, yield strength and elongation of T6 treated alloys rise to around 500 MPa, 420 MPa, and 18%, respectively.

  相似文献   

13.
The paper deals with a new process chain consisting of powder metallurgy (PM) and a subsequent thixoforging process. This innovative production process can increase the complexity of PM components and enable a high formability of brittle materials such as metal matrix composites (MMC). Compared to conventional materials MMCs feature improved mechanical properties and thus a high potential for various applications. In this investigation cylindrical raw parts, consisting of a steel powder and different proportions of titanium carbide particles, were produced by uniaxial powder pressing and sintering. Subsequently, the samples were heated up to the thixotropic (semi-solid) temperature range and valve parts were thixoforged by a backwards rod extrusion process. Finally, the particle-reinforced steel parts were characterised by metallographic analysis and hardness measurements.  相似文献   

14.
Abstract

International standards for aluminium alloys often permit significant fluctuations in the content of alloying elements. This allows metal suppliers more freedom in preparing these alloys. It is shown that the magnesium content of semisolid metal processed Al–Si–Mg alloy A356 has a significant influence on the natural and artificial aging behaviour of the alloy. Furthermore, natural aging before artificial aging causes the time to peak hardness (T6) to be longer compared to the time when only artificial aging is used. The optimum quality index in this study was obtained using a short solution heat treatment of 1 h at 540°C, no natural aging and artificial aging at 180°C for 1 h. An increase in the magnesium content of the alloy resulted in an increase in the quality index for all the T6 heat treatment cycles studied.  相似文献   

15.
Abstract

This research project investigated the process conditions of using squeeze casting process to produce aluminium alloy preforms or billets for subsequent cold forging process. The comparative effects of heat treatments, their microstructures and mechanical properties were evaluated. Through these studies and experiments, the main emphasis is on the study of commercial material Al 6061, Al 2014 and Al 356 alloys. The formability of the alloys was carried out using forward and backward extrusion test at 50% area reduction at room temperature (cold extrusion). It was found that when wrought aluminium 6061, 2014 and 356 alloys were squeeze cast to form the preforms, the preform microstructures revealed very fine microstructures that are feasible to be cold extruded. In addition, after thermal annealing treatment of 6061 squeeze cast preforms, the samples showed a similar value of work hardening exponent value of 0˙20 as compared to the wrought aluminium alloy 6061, with a workhardening exponent value of 0˙21 obtained from the static compression test. Wrought aluminium alloys generally cost twice the amount as compared with casting ingots. The microstructures of the squeeze cast 6061 alloy showed no visible cracks or inclusions after the deformation by extrusion. The results of the studies showed that Al 6061 preforms via squeeze cast technique may be cold extruded or formed, which provide an alternative means for the production of billets for the cold extrusion or forging process.  相似文献   

16.
You  Zhi-yong  Jiang  Ao-xue  Duan  Zhuang-zheng  Qiao  Gang-ping  Gao  Jing-lei  Guo  Ling-bing 《中国铸造》2020,17(3):219-226
Semi-solid AZ91D magnesium alloy billets were prepared by near-liquidus heat holding. Semi-solid squeeze casting was conducted at 575, 585 and 595 ℃, respectively, with 1 mm·s~(-1) squeeze speed. The semisolid squeeze casting AZ91D samples were heat treated by T4(solution at 415 ℃ for 24 h) and T6(solution at 415 ℃ for 24 h + 220 ℃ for 8 h) processes, respectively. The microstructure and mechanical properties of the alloy in different states were investigated by means of OM, SEM and tensile testing machine. The results show that compared to as-cast alloy, the grain size of the semi-solid squeezed AZ91D decreased significantly, and with the increase of semi-solid squeeze temperature, the grain size of AZ91D increased. The grains of the alloy were refined by T4 treatment, and further refined by T6 treatment. T6 treatment greatly improved the tensile strength, elongation, and hardness, but did not significantly improve yield strength. After 575 ℃ squeeze casting and T6 treatment, the ultimate tensile strength(UTS) reached 285 MPa, the elongation reached 13.36%, and the hardness also reached the maximum(106.8 HV), but the yield strength(YS) was only 180 MPa. During the process of semi-solid squeeze casting and heat treatment, the matrix grain was refined and a large number of precipitated and secondary precipitated phases of Mg_(17)Al_(12) appeared. Both the average size of matrix grain and secondary precipitated phase decreased, while the volume fraction of secondary precipitated phase increased. All these resulted in high tensile strength, elongation and hardness.  相似文献   

17.
Magnesium alloys are attracting great interest from the automotive industry because of the potential for weight reduction. An AZ91D cast alloy was studied in the current work to understand the effect of heat treatment on the microstructure and dynamic compressive properties. The selected heat treatments include solution treatment (T4) and solution treatment followed by aging (T6). The as-cast alloy microstructure consists of intermetallic β-phase (Mg17Al12) precipitates surrounded by α + β lamellar eutectic in α-Mg solid solution. The AZ91D-T4 specimens showed small β-phase precipitates along the grain boundaries and regions of eutectic mixture. The T6 heat treatment causes the β-phase platelets in the α + β eutectic to grow and develop into β-precipitates. The difference in the phase morphology reflects into the mechanical properties. The Vickers hardness of the T6 heat-treated specimens was 3.6% higher than the as-cast alloy. The compressive yield strengths of T4 and T6 treated specimens were 1.3% and 43.1% higher than those of as-cast specimens. The high strain rate compression testing resulted in increase in the strength with strain rate for the T4 and T6 specimens. A maximum increase of 42% was observed in T6 specimen tested at a strain rate of 4,000/s in comparison to the quasi-static compression. Under high strain rate compression testing, the T6 heat-treated specimens showed failure of the β-precipitates resulting in increased energy absorption in comparison to the quasi-static compression.  相似文献   

18.
The current study investigates the influences of the fluidized bed heat treatment on the quality indices and microstructural characterization of A356.2 and B319.2 castings. Traditional heat treatment technology, employing circulating air convection furnaces (CF), was used to establish a relevant comparison with fluidized sand bed (FB) for the heat treatment of the alloys investigated, employing T6 continuous aging cycles or multi-temperature aging cycles. The results of alloys subjected to multi-temperature aging cycles reveal that the strength results obtained after the T6 continuous aging treatment of A356 alloys are not improved by means of multi-temperature aging cycles, indicating therefore that the optimum properties are obtained using a T6 aging treatment. The optimum strength properties of B319.2 alloys, however, is obtained by applying multi-temperature aging cycles such as, for example, 230 °C/2 h followed by 180 °C/8 h, rather than T6 aging treatment. In the case of multi-temperature aging cycles, the modification factor has the most significant role in improving the quality index values of 356 and 319 alloys. The FB heattreated alloys have the highest strength values for all heat treatment cycles compared to CF heat-treated alloys; however, the FB has no significant effect on the quality values of 319 alloys compared to the CF.  相似文献   

19.
Al4Cu2Ni2Mg alloy is an age-hardenable aluminum alloy. The effect of different solution and aging heat treatment conditions on the microstructure, hardness and wear resistance of the alloy was studied. The cast specimens were solution treated and then artificially aged. Optical microscopy and scanning electron microscopy were used to investigate the microstructures of the specimens. The hardness and wear tests were applied to understanding the effects of heat treatment. After aging for 8 h, the hardness of the alloy increases from HV10 96.5 to 151.1. Aging treatment for a longer duration causes a drop in the hardness because of over aging. Increasing the hardness of the alloy increases the wear resistance. As a result of all tests, solution heat treatment at 540 °C for 8 h and aging at 190 °C for 8 h were chosen for optimum heat treatment conditions for this alloy.  相似文献   

20.
Commercial casting Al-Si (A356)-based composites reinforced with different volume fractions of alumina (Al2O3) nanoparticulates (average particle size 50 nm) were synthesized in this study. Particle distribution, hardness, and tensile properties in the as-cast condition were experimentally investigated. The A356 alloy composite showed an increase in hardness, elastic modulus, and tensile strength compared with monolithic alloys. Finally, a combination of an artificial neural network and the finite element method (FEM) was implemented to predict the microstructure and mechanical properties including grain size, length of silicon rods, amount of porosity, hardness, tensile yield stress, ultimate tensile stress, and elongation percentage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号