首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyan-emitting Ca9NaGd2/3(PO4)7:Eu2+phosphors were synthesized via high temperature solid-state route.X-ray powder diffraction(XRD)and scanning electron microscopy(SEM)were used to verify the phase and morphology of the Ca9NaGd2/3(PO4)7:Eu2+(CNGP:Eu2+)phosphors.The as-obtained phosphor exhibits a broad excitation band of 250-420 nm,which is near the ultraviolet region.An intense asymmetric cyan emission at 496 nm corresponds to the 5 d-4 f transition of Eu2+.The multiplesite luminescent properties of Eu2+ions in CNGP benefit from versatile structure ofβ-Ca3(PO4)2 compounds.The effective energy transfer distance is 5.46 nm(through the spectral overlap calculation),validating that the resonant energy migration type is via dipole-dipole interaction mechanism.Compared to the initial one at room temperature,the luminescent intensity of CNGP:Eu2+phosphor can maintain 77%as it is heated up to 420 K.A white light-emitting diode(WLED)with excellent luminesce nt properties was successfully fabricated.Moreover,the CIE chromaticity coordinates of fabricated WLED driven by changing current just change slightly.  相似文献   

2.
A series of reddish orange phosphors Ba_3Gd_(1-x)(PO_4)_3:xSm~(3+)(x = 0.02.0.04,...,0.12) were prepared by the high-temperature solid-state reaction. X-ray powder diffraction(XRD) and diffuse reflectance and photoluminescence spectra were utilized to characterize the structure and spectral properties of the phosphors. The phosphors have strong absorption in the near-UV region. CIE chromaticity coordinates of the phosphors are located in the reddish orange region since the strongest emission band is around 598 nm and related to the ~4 G_(5/2)→~6 H_(7/2) transition of Sm~(3+). Optimal concentration of Sm~(3+) in the phosphors is about 6.0 at%. The quantum yield of the Ba_3Gd_(0.94)(PO_4)_3:0,06 Sm~(3+) under excitation at 403 nm is about 52.07%. Temperature dependent photoluminescence spectra of the Ba_3Gd_(0.94)(PO_4)_3:0.06 Sm~(3+) were measured and the phosphor exhibits high thermal stability of emission. All the results show that the Ba_3Gd(PO_4)_3:Sm~(3+) phosphor may be a potential red phosphor for near-UV based white LEDs.  相似文献   

3.
A series of Eu~(2+),Tb~(3+)-codoped Sr_3 Y(PO_4)_3(SYP) green phosphors were synthesized by hightemperature solid-state reaction. Several techniques, such as X-ray diffraction, UV-vis spectrum,and photoluminescence spectrum, were used to investigate the obtained phosphors. The present study investigates in detail photoluminescence excitation and emission properties, energy transfer between the two dopants, and effects of doping ions on optical band gap. SYP:0.05 Eu2+ phosphor shows an intense and broad excitation band ranging from 220 to 400 nm and exhibits a bright green emission band with CIE chromaticity coordinates(0.189, 0.359) under 350 nm excitation. Green emission of SYP:0.03 Tb3+ is intensified by codoping with Eu~(2+), and energy transfer mechanism between them is demonstrated to be a dipole-dipole interaction. Upon 350 nm excitation, SYP:Eu~(2+),Tb~(3+) phosphors exhibits two dominating bands peaking at 466 and 545 nm, which are assigned to 4 f~65 d~1→4 f~7 transition of Eu~(2+) ions and ~5 D_4→~7 F_5 transition of Tb~(3+) ions, respectively. Optimal doping concentrations of Eu~(2+) and Tb~(3+) in the SYP host are 5 mol% and 15 mol%, respectively. Results indicate that SYP:Eu~(2+),Tb~(3+) phosphors are potentially used as green-emitting phosphors for white light-emitting diodes.  相似文献   

4.
A series of red phosphors Ca10Li (PO4)7:Eu3+ were synthesized by high temperature solid-state reaction method. Their luminescence properties were characterized by means of photoluminescence excitation and emission spectra,CIE chromaticity and quantum efficiency. Results indicated that the phosphors could be effectively excited by the near ultraviolet (NUV) light (393 nm). The main emission peaks of the phosphor were ascribed to the transition 5D0-7F2 (613 and 617 nm) of Eu3+ ion when samples were excited by...  相似文献   

5.
A series of Eu2+/Dy3+ single doped and co-doped Na3Sc2(PO4)3 phosphors were synthesized by the high-temperature solid-state method, and their phase, morphology, and luminescence properties were characterized. Under the excitation of 370 nm, the Na3Sc2(PO4)3:Eu2+,Dy3+ phosphor can emit white light whose spectrum is composed of a broad emission band centered at 460 nm and the other three peaks at 483, 577, and 672 nm, respectively. There is energy transfer from Eu2+ to Dy3+ ion in Na3Sc2(PO4)3:Eu2+,Dy3+ phosphor due to the good overlap between the emission spectrum of Na3Sc2(PO4)3:Eu2+ and the excitation spectrum of Na3Sc2(PO4)3:Dy3+, which is further confirmed by the fluorescence lifetime decrease of Eu2+ ion with the increase of Dy3+ concentration. The process of energy transfer is via dipole–quadruple interaction which is confirmed by applying Dexter's theory. By increasing the Dy3+ concentration, the color coordinates of the Na3Sc2(PO4)3:0.01Eu2+,xDy3+ phosphors can be adjusted from blue to white, and then to yellow. The optimized concentration of Dy3+ ions is 4.0 mol%, beyond which the concentration quenching will take place. The Na3Sc2(PO4)3:Eu2+,Dy3+ phosphor shows fairly good resistance to thermal quenching behavior, of which the emission intensity at 423 K can maintain 90.3% of the initial value (298 K). These results suggest that the Na3Sc2(PO4)3:0.01Eu2+,xDy3+ phosphors have potential applications as the color-tunable or a single-phase white emitting phosphor in white LEDs.  相似文献   

6.
A single-phase full-color emitting phosphor Sr2Ca2La(PO4)3O:Eu2+,Tb3+,Mn2+ was synthesized by the high temperature solid-state method. The phase formation, luminescence properties, thermal stability, and energy transfer from Eu2+ to Tb3+ and Eu2+ to Mn2+ in Sr2Ca2La(PO4)3O were investigated in details. Tunable emission color from blue to blueish green or orange can be observed under 365 nm near-ultraviolet excitation based on the energy transfer from Eu2+ to Tb3+ or Mn2+ ions by varying the ratio of Eu2+/Tb3+ or Eu2+/Mn2+ ions. White light was obtained with chromaticity coordinates of (0.3558, 0.3500) in the Sr2Ca2La(PO4)3O:0.04Eu2+,0.08Tb3+,0.40Mn2+ phosphor, suggesting their potential applications in white light emitting diodes.  相似文献   

7.
Li2Y4-xEux(WO4)7-y(MoO4)y red-emitting phosphors were synthesized by solid state reaction and characterized by powder X-ray diffraction (XRD) and photoluminescence (PL) spectrum. The excitation spectra showed that the phosphors could be efficiently excited by near-UV light of 395 nm. When the relative molar ratio of Mo/W was 7:0, and the optimum doped concentration of Eu3+was 2.8 mol, the phosphor showed strong red emission lines at 615 nm corresponding to the forced electric dipole 5D0→7F2 transition of Eu3+. Compared with Na2Y2Eu2(MoO4)7 and K2Y2Eu2(MoO4)7, the fluorescence intensity of Li2Y1.2Eu2.8(MoO4)7 phosphor was the strongest. The CIE chromaticity coordinates of Li2Y1.2Eu2.8(MoO4)7 phosphor was calculated to be (0.66, 0.34).  相似文献   

8.
A blue phosphor Ca2PO4Cl:Eu2+ (CAP:Eu2+) was synthesized by solid state reaction. The Ca2PO4Cl:Eu2+ exhibited high quantum efficiency and excellent thermal stability. The luminescent intensity of Ca2PO4Cl:Eu2+ was found to be 128% under excitation at 380 nm, 149% under 400 nm, and 247% under 420 nm as high as that of BaMgAl10O17:Eu2+. The optimal doping concentration was observed to 11 mol.% of CAP:Eu2+. The energy transfer between Eu2+ ions in CAP were occurred via electric multipolar interaction, and the critical transfer distance was estimated to be 1.26 nm. A mixture of blue-emitting Ca2PO4Cl:Eu2+, green-emitting (Ba,Sr)2SiO4:Eu2+ and red-emitting CaAlSiN3:Eu2+ phosphors were selected in conjunction with 400 nm chip to fabricate white LED devices. The average color-rendering index Ra and correlated color temperature (Tc) of the white LEDs were found to be 93.4 and 4590 K, respectively. The results indicated that it was a promising candidate as a blue-emitting phosphor for the near-UV white light-emitting diodes.  相似文献   

9.
Eu~(3+) activated and Eu~(3+), Tb~(3+) co-activated monodisperse sodium double tungstates NaGd(WO4)2 phosphors were prepared by molten salt method at 750 ℃ for 10 h using NaCl as a flux. The crystal structure and morphology of the as-synthesized phosphors were measured by XRD and SEM, respectively. The photoluminescence properties were characterized by PL spectra, decay lifetime and CIE. The presence of NaCl plays an important role in the morphology and luminescence properties. In this work,NaCl and one of the raw material Na_2 CO_3 in a certain proportion will form a low eutectic salt to decrease the reaction temperature and benefit the formation of monodisperse NaGd(WO_4)_2 crystals. The color of Eu~(3+) and Tb~(3+) co-doped NaGd(WO_4)_2 phosphors can be tuned from creamy white to orange, red and green by adjusting the doping concentration of rare earth ions, since the emission contain the broad blue-green emission origin from NaGd(WO_4)_2 host and characteristic red and green emission origin from Eu~(3+) and Tb~(3+) ions. The electroluminescent spectra and CIE measurement shows that the LED device with NaGd_((1-x))(WO_4)_2:xEu~(3+)(x = 0.24) phosphor can be excited by 365 nm and 380 nm LED chip, and their CIE coordinate is(x = 0.45, y = 0.45) and(x = 0.36, y = 0.37), Ra is 80.3 and 86.3, T_c is 3196 and4556 K, respectively. As a single-component phosphor, NaGd(WO_4)_2:Eu~(3+),Tb~(3+) have potential application in UV-pumped WLEDs.  相似文献   

10.
Green-emitting Sr2LiSiO4F:Eu2+ and blue-emitting Sr2MgSi2O7:Eu2+ phosphors were synthesized by the conventional high temperature solid-state route,respectively.Their structures and photoluminescenee properties were comparatively investigated.It was found that the mixture phases of Sr2MgSi2O7 and SrF2 were obtained when a part of Sr2+ in Sr2LiSiO4F was replaced by some amount of Mg2+ in order to design the possible SrMgLiSiO4F:Eu2+ phosphor.Based on the photoluminescence analysis,Sr2LiSiO4F:Eu2+ phosphor exhibited a green broad emission band of main peak at 513 nm under the excitation of 365 nm,while the Sr2MgSi2O7:Eu2+ and SrMgLiSiO4F:Eu2+ phosphor showed blue emission centered at 467 nm.The temperature dependent photoluminescence properties and room temperature decay time for the three kinds of phosphors were also discussed in this paper.  相似文献   

11.
A series of blue long afterglow mixed halide-phosphate phosphors Sr5 (PO4)3 FxCll-x:Eu2+,Gd3+ were synthesized in air by traditional solid-state reaction routte. The crystal structures, photoluminescence, thermolurninescenee properties and afterglow proper- ties of the phosphors were characterized systematically using X-ray diffraction (XRD), luminescence spectrophotometer, microcom- puter thermoluminescence dosimeter and single photon counter, respectively. Under 280 nm excitation, the broadband emissions of Eu2+ ions were observed at 445 nm (blue) due to the 4f7→4f65d transition. It was demonstrated that there existed the self-reduction of the Eu3+ to Eu2+ ions in this special halide-phosphate matrix in air condition. The addition of Gd3+ ions obviously enhanced the after- glow properties of the single doped Eu2+ ions in the halide-phosphate phosphors. And the content of the fluoride anions also had sig- nificant influence on the afterglow properties. All results indicated that Srs (PO4)3 FxCI1-x:Eu2+,Gd3+ might be potential phosphors for long lasting phosphorescence (LLP) materials.  相似文献   

12.
A series of new oxyapatite red phosphors Ca3Y7(BO4)(SiO4)5O doped with different concentrations of Eu3+ were successfully synthesized by high temperature solid state method. The X-ray diffraction (XRD) Rietveld refinement results show that the structure of the phosphor belongs to space group P63/m and Eu3+ ion replaces Y3+ ion. The emission spectrum consists of the characteristic emission peaks corresponding to Eu3+ under the excitation of 274 nm and the dominant emission peak is at 614 nm (5D07F2 of Eu3+). The concentration quenching effect occurs and the optimized Eu3+ concentration is 4.0 mol%. The energy level diagram for luminous mechanism is also given and the non-radiative energy transfer mechanism between Eu3+ is mainly exchange interaction. The CIE coordinate is close to the ideal red light and the color purity is higher than 99.79%. Moreover, the phosphor exhibits moderate thermal stability because the photoluminescence intensity at 423 K is still maintained at higher than 78.97% of that at room temperature. The internal quantum efficiency of Ca3Y7(BO4)(SiO4)5O:4.0 mol%Eu3+ phosphor is 58.2%. A red light emitting diode (LED) device based on it can emit bright red light. The CCT values of the device are basically unchanged when driven by various bias current. The results show that Ca3Y7(BO4)(SiO4)5O:Eu3+ is a new type of oxyapatite red fluorescent material with good comprehensive performances.  相似文献   

13.
A novel single-phase Sm~(3+) activated Ca_5(PO_4)_2SiO_4 phosphor was successfully fabricated via a conventional solid-state method, which can be e fficie ntly excited by near ultraviolet(n-UV) light-emitting chips.The crystal structure and luminescence properties were characterized and analyzed systematically by using relevant instruments. The Ca_5(PO_4)_2SiO_4:Sm~(3+) phosphor shows an orange-red emission peaking at600 nm under the excitation of 403 nm and the optimal doping concentration of Sm~(3+) is determined to be 0.08, The critical distance of Ca_5(PO_4)_2SiO_4:0.08 Sm~(3+) is calculated to be 1.849 nm and concentration quenching mechanism of the Sm~(3+) in Ca_5(PO_4)_2SiO_4 host is ascribed to energy transfer between nearestneighbor activators. The decay time of Ca_5(PO_4)_2 SiO_4: 0,08 Sm~(3+) is determined to be 1.1957 ms. In addition, the effect of temperature on the emission intensity was also studied, 72.4% of the initial intensity is still preserved at 250 ℃, better thermal stability compared to commercial phosphor YAG:Ce~(3+) indicates that Ca_5(PO_4)_2SiO_4:0.08 Sm3+ has excellent thermal stability and active energy is deduced to be 0.130 eV.All the results demonstrate that orange-red emitting Ca_5(PO_4)_2SiO_4:0.08 Sm~(3+) phosphor exhibits good luminescent properties. Owing to the excellent thermal quenching luminescence property,Ca_5(PO4)_2SiO_4:0.08 Sm~(3+) phosphor can be applied in n-UV white light emitting diodes and serve as the warm part of white light.  相似文献   

14.
Langbeinite type compounds are a large kind of oxometallate with good flexibility structure.Herein,we synthesized a new langbeinite type compound K_2 Dy_(1.5)Ta_(0.5)(PO_4)_3,in which the Dy~(3+) and Ta~(5+) were blended to occupy the same crystallographic sites.Simultaneously,solid solutions of K_2 Dy_(1.5)_(-x)Eu_xTa_(0.5)(PO_4)_3(x=0-1.5) were prepared and their photoluminescence properties were investigated.Due to energy transfer from Dy~(3+) to Eu~(3+),both Dy~(3+) and Eu~(3+) characteristic emissions are observed under 393 nm light excitation.The emitting color of K_2 Dy_(1.5-x)Eu_xTa_(0.5)(PO_4)_3 turns from green through yellow to red by simply adjusting the Eu~(3+) concentration from 0 to 0.4.Moreover,K_2 Dy_(1.48)Eu_(0.02)Ta_(0.5)(PO_4)_3 phosphor possesses excellent fluorescence thermal stability and exhibits zero thermal quenching at 150 ℃.These results manifest that K_2 Dy_(1.5-x)Eu_xTa_(0.5)(PO_4)_3 solutions are promising multi-color emitting phosphors candidate for near-UV LED.  相似文献   

15.
The Zn_(1-x)Al_2 O_4:xEu~(2+) phosphor powders were synthesized by the solid-state reaction method.The synthesis temperature for ZnAl_2 O_4 was optimized,whereas the phase structure,TEM images,photoluminescence(PL) properties,the concentration quenching mechanism,the fluorescence decay curves,as well as the CIE chromaticity coordinates of the samples were investigated in details.Under the excitation at 379 nm,the phosphor exhibits an asymmetric broad-band green emission with a peak at 532 nm,which is ascribed to the 5 d-4 f transition of Eu2+.When the doping concentration of Eu2+ ions is 0.01,the luminescence intensity of the sample reaches the maximum value.It is further proved that the exchange interaction results in the concentration quenching of Eu2+ in the Zn_(1-x)Al_2 O_4:xEu~(2+) phosphor powders.The thermal quenching property of ZnAl_2 O_4:Eu~(2+)phosphor was investigated and the quantum efficiency(QE) values of the selected Zn_(0.99)Al_2 O_4:0.01 Eu~(2+) phosphor was measured and determined as 54.85%.The lifetime of the optimized sample Zn_(0.99)Al_2 O_4:0.01 Eu~(2+) is 3.0852 μs and the CIE coordinate of the sample was calculated as(0.3323,0.5538) with high-color-purity green emission.All properties indicate that the green-emitting ZnAl_2 O_4:Eu~(2+) phosphor powder has potential application in white LEDs.  相似文献   

16.
Eu2+ and (or) Eu3+ doped Sr2SiO4 phosphors particles were synthesized by a conventional solid-state reaction technique, and their structural and optical properties were investigated. The X-ray diffraction (XRD) results showed that the obtained phosphors were composed of orthorhombic α'-Sr2SiO4 and monoclinic β-Sr2SiO4 phase. When excited under 256 nm, Sr2SiO4:Eu3+ phosphors showed intense emission in the red region. Sr2SiO4:Eu3+ phosphors exhibited white emissions (x=0.30, y=0.40, TC=6500 K) ranging from 425 to 650 nm when it was excited by near-ultraviolet (near-UV) light, indicating that Sr2SiO4:Eu2+ was a good light-conversion phosphor candidate for near-UV chip.  相似文献   

17.
A series of novel red-emitting BaLiZn3(BO3)3:Eu3+ phosphors were synthesized through the high temperature solid state reaction method. The phase composition, crystal structure, morphology and photoluminescence property of the BaLiZn3(BO3)3:Eu3+ samples were systematically investigated. The phosphor can be efficiently excited by the near ultraviolet light (NUV) of 396 nm and blue light of 466 nm, and give out red light emission at 618 nm corresponding to the electric dipole transition (5D07F2). The optimal doping concentration of Eu3+ ions in BaLiZn3(BO3)3 is determined to be about 3 mol%, and the concentration-quenching phenomenon arise from the electric dipole–dipole interaction. The temperature dependent luminescence behavior of BaLiZn3(BO3)3:0.03Eu3+ phosphor exhibits its good thermal stability, and the activation energy for thermal quenching characteristics is calculated to be 0.1844 eV. The decay lifetime of the BaLiZn3(BO3)3:0.03Eu3+ is measured to be 1.88 ms. These results suggest that the BaLiZn3(BO3)3:Eu3+ phosphors have the potential application as a red component in white light emitting diodes (WLEDs) with NUV or blue chips.  相似文献   

18.
Gd2InSbO7:Eu3+ red phosphors were successfully synthesized via high-temperature solid–state reaction. The phase purity, particle size, and luminescence properties of obtained phosphors were measured and analyzed in detail. The Gd2InSbO7 lattice possesses cubic structure with Fd-3m (227) space group. The phosphors emit bright red emission at 628 nm under 393 nm excitation, and this phenomenon is attributed to the 5D07F2 transition. The Judd–Ofelt parameters (Ω2, Ω4), transition ratio, and branching ratios (β) of Eu3+-doped Gd2InSbO7 phosphor were calculated on the basis of the emission spectra and decay lifetimes. The optimal content in Gd2InSbO7:xEu3+ is identified to be 15 mol%. The thermal quenching of Gd2InSbO7:Eu3+ is found to be over 500 K, and its activation energy is 0.26 eV. The Commission Internationale de l'Eclairage (CIE) chromaticity coordinates of Gd2InSbO7:15%Eu3+ are (0.629, 0.371), which are close to ideal red chromaticity coordinates (0.670, 0.330). The fabricated w-LED exhibits good color rendering index (Ra) (86), correlated color temperature (CCT) (6997 K), and CIE chromaticity coordinates (0.302, 0.330). The obtained results demonstrate that Gd2InSbO7:Eu3+ phosphors have potential applications in white LEDs.  相似文献   

19.
Sr2SiO4:xEu^2+ phosphors were synthesized through the solid-state reaction technique. The crystal phase of Sr2SiO4:xEu^2+ phosphor manipulated by Eu^2+ concentration was studied. The phase transited from β to α' in Sr2SiO4:xEu^2+ phosphor with increasing europium concentration. The single β phase was formed as x≤005 and changed α' phase when x〉0.01. The emission spectrum of the β-Sr2SiO4:Eu^2+ phosphor consisted of a green-yellow broadband peaking at around 540 nm and a blue band at 470 nm under near ultraviolet excitation. The white LEDs by combining near ultraviolet chips with β-Sr2SiO4:Eu^2+ phosphors were fabricated. The luminous efficiency (15.7lm/W) was higher than α'-Sr2SiO4:Eu^2+ phosphor white LED.  相似文献   

20.
The powder samples of Ca9Sc(PO4)7:xDy^(3+)white emitting phosphors were prepared via a solid state reaction technique.The Ca9Sc(PO4)7:Dy3+samples were researched by using the GSAS Rietveld refinement and X-ray diffraction(XRD) methods,and SEM images and elemental maps were recorded.Under 350 nm excitatio n,the emission spectra of Ca9Sc(PO4)7:xDy3+samples have two obvious peaks and one weak peak at 484,572 and660 nm,corresponding to the characteristic electron transitions of(4F9/26H15/2,blue),(4F9/26H13/2,yellow) and(4F9/2→ 6 H11/2,red),respectively.The concentration quenching effect,decay lifetime and thermal quenching of the as-synthesized Ca9Sc(PO4)7:Dy3+samples were researched systematically.The Ca9Sc(PO4)7:0.02 Dy3+phosphor possesses a good thermal stability,of which the emission intensity at 423 K can maintain 79% of the initial value(273 K).In addition,through the study of the chro maticity coordinates of the Ca9Sc(PO4)7:0.02 Dy3+phosphor,it is found that it is located in the white region,and the Commission Internationalede L’Eclairage(CIE) chromaticity coordinates are(0.339,0.389),The above results show that Ca9Sc(PO4)7:xDy3+phosphors can be excellent candidate material for applications in NUV-excited white LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号