首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of Co3O4 spinel catalysts modified by Sm were prepared by co-precipitation method and tested for CH4 and CO oxidation.The addition of a small amount of Sm into Co3O4 led to an improvement in the catalytic activity for both reactions.Co0.98Sm0.02 and Co0.95Sm0.05,the two samples with Co/Sm molar ratio of 0.98/0.02 and 0.95/0.05 in sequence,showed the similar and the highest activity for CH4 oxidation,with CH4 complete conversion at 450 oC.In contrast,Co0.90Sm0.10 was the most active sample for CO oxidation,with CO complete conversion at 120 oC.The catalysts were characterized by techniques of N2 adsortion-desorption with Brunauer-Emmett-Teller technique(N2-BET),X-ray powder diffraction(XRD),thermal gravity analysis-differential scanning calorimetry(TGA-DSC),H2 temperature programmed reduction(H2-TPR) and X-ray photoelectron spectroscopy analysis(XPS).Compared with pure Co3O4,for Co1–x Smx catalysts with 0.02≤x≤0.10,the addition of a small amount of Sm resulted in the formation of spinel Co3O4 and amorphous SmCoO3,hence increasing the number of Co3+ and the active surface oxygen species,which was responsible for the improvement of the activity.Co0.95Sm0.05 catalyst showed not only high thermal stability and activity but also good reaction durability in the presence of 5% water vapor for CH4 oxidation.  相似文献   

2.
Samarium (Sm) has been widely used in making aluminum (Al)–Sm magnet alloy materials. The research team for this study developed a molten salt electrolyte system which directly produces Al–Sm alloy to replace the energy intensive conventional distillation technology. In this study, molten melt density was measured and operation conditions were optimized to separate Al–Sm alloy product from the fluoride molten melt electrolysis media based on density differences. Archimedes' principle was applied to measure density for the basic molten fluoride system (BMFS: Na3AlF6–AlF3–LiF–MgF2) electrolysis media in the temperature range from 905 to 1055 °C. The impact of temperature (t) and the Al2O3 and Sm2O3 addition ratio (w(Al2O3), w(Sm2O3)) in the basic fluoride system on molten melt density was examined. The fluoride molten melt density relationship was determined to be: ρ = 3.11701 ? 0.00802w(Al2O3) + 0.027825w(Sm2O3) ? 0.00117t. The test results showed that molten density decreases with increase in temperature and Al2O3 addition ratio, and increases with the addition of Sm2O3, and/or Al2O3 + Sm2O3. The separation of Al–Sm (density 2.3 g/cm3) product melt from the BMFS melt is achieved by controlling the BMFS density to less than 2.0 g/cm3. It is concluded that the optimal operation conditions to control the BMFS molten salt density to less than 2.0 g/cm3 are: maintain addition of Al2O3 + Sm2O3 (w(Al2O3) + w(Sm2O3)) < 9% of Na3AlF6, Al2O3/Sm2O3 ratio (w(Al2O3):w(Sm2O3)) > 7:3, and temperature between 965 and 995 °C.  相似文献   

3.
This paper examines the phase transformation and microstructure of Zn2Ti3O8 nanocrystallite powders prepared using the hydrothermal process that includes TiCl4 and Zn(NO3)2·6H2O as the initial materials. Differential thermal analysis, X-ray diffraction, transmission electron microscopy (TEM), selected area electron diffraction, nanobeam electron diffraction, and high resolution TEM were utilized to characterize the transition behavior of zinc titanate precursor powders after calcination. Nanocrystalline Zn2Ti3O8 powders with a size range of about 5.0 to 8.0 nm were obtained when the precursor powders were calcined at 773 K (500 °C) for 1 hour. When the zinc titanate precursor powders were calcined at 1073 K (800 °C) for 1 hour, the cubic crystal of Zn2Ti3O8 with a o = 0.8399 ± 0.0003 nm still remained the predominant crystalline phase and the crystallite size increased to 20.0 nm. In addition, ZnTiO3 phase first appeared because of the 13.8 pct of Zn2Ti3O8 decomposition when the zinc titanate precursor powders were calcined at 1073 K (800 °C) for 1 hour. When the zinc titanate precursor powders were calcined at 1073 K (800 °C) for 9 hours, the Zn2Ti3O8 crystallites grew continuously to 80.0 nm and enhanced the crystallinity. When the precursor powders were calcined at 1273 K (1000 °C) for 1 hour, Zn2TiO4 crystallites with a o = 0.8461 ± 0.0002 nm were the predominant crystalline phase.  相似文献   

4.
《Hydrometallurgy》2007,85(2-4):183-192
Iron(III) can be used as an oxidant in the leaching of uranium ore in an acid medium. The oxidation of iron(II) to iron(III) using an SO2/O2 gas mixture was investigated in order to provide an iron(III) stream for uranium extraction. The effects of pH, temperature and SO2/O2 volumetric ratios were considered. Oxidation of iron(II) by SO2/O2 was controlled by diffusion of SO2 or O2 at pH 2 and 40 °C. However as the pH decreased below pH 1, the reaction was controlled by a slow chemical step and the reaction rate decreased. Increasing the temperature increased the oxidation rate at pH 0.8, and at 70 °C the rate again became dependent on SO2 or O2 diffusion. The oxygen efficiency for a fixed reactor set-up was dependent on the SO2/O2 ratio and total flow rate of the gas. In leach tests, the uranium extraction achieved with iron(III) solution prepared by SO2/O2 oxidation was the same as that for a standard uranium leach with conventional oxidant.  相似文献   

5.
0.5 Ca_(0.6)La_(0.267)TiO_3-0.5 Ca(Mg_(1/3)Nb_(2/3))O_3(5 CLT-5 CMN) ceramics were prepared by a reaction-sintering process and their sintering characteristics, microwave dielectric properties were investigated in detail.Without any calcination stage involved,a mixture of CaCO_3, La_2 O_3, TiO_2, MgO and Nb_2 O_5 was pressed and sintered directly. Pure phase 5 CLT-5 CMN ceramics with high density and dense microstructure can be obtained after sintered at 1400 ℃ for 4 h. Compared with those prepared by the conventional ceramic route, 5 CLT-5 CMN ceramics produced by the reaction-sintering process exhibit slightly higher dielectric constant and Q×f value. Fine microwave dielectric properties of ε_r= 56.4, Q×f= 48,550 GHz and T_f = +8.7 ppm/℃ for 5 CLT-5 CMN ceramics sintered at 1400 ℃ for 4 h are obtained, suggesting reactionsintering process is a simple and efficient method to produce pure phase 5 CLT-5 CMN ceramics as a potential candidate for the fabrication of microwave devices.  相似文献   

6.
A novel orange-red emitting Ba3Y4O9:Sm3+ phosphors were prepared by a high temperature solid-state reaction in air. X-ray diffraction (XRD), photoluminescence spectra, fluorescence decay and temperature-dependent emission spectra were utilized to characterize the structure and luminescence properties. The results show that the excitation spectrum includes a series of linear peaks at 350, 367, 382, 410, 424, 445, 470 and 495 nm, respectively. Under 410 nm excitation, the emission peaks were located at 574 nm (4G5/26H5/2), 608 nm (4G5/26H7/2), 659 nm (4G5/26H9/2) and 722 nm (4G5/26H11/2), respectively. The concentration quenching occurs when x equals 0.08 for Ba3Y4–xO9:xSm3+ phosphor and its mechanism is ascribed to the dipole–dipole interaction. The chromaticity coordinates of Ba3Y3.92O9:0.08Sm3+ phosphor are in the orange-red region. The temperature-dependent study shows that this phosphor has excellent luminescence thermal-stability. And the luminescence intensity of Ba3Y3.92O9:0.08Sm3+ phosphor at 473 K only declines by about 25.75% of its initial intensity. The experimental data indicate that Ba3Y4O9:Sm3+ phosphor may be promising as an orange-red emitting phosphor for white light emitting diodes.  相似文献   

7.
Doped ceria electrolytes of Ce0.8Sm0.20O1.90 (SDC), Ce0.8Er0.08Sm0.12O1.90 (ESDC), Ce0.8Gd0.08Sm0.12O1.90 (GSDC), and Ce0.8Nd0.08Sm0.12O1.90 (NSDC) were prepared by a citric–nitrate combustion process. The thermal decomposition of the precursor was investigated by simultaneous thermogravimetric analysis and differential thermal analysis experiments. The phase structure of the calcined and sintered powders was characterized by X-ray diffraction analysis. All of the samples were fluorite-type ceria-based solid solutions. The calcined and sintered powders were also characterized by Fourier transform infrared spectroscopy. Scanning electron microscopy was used to characterize the samples after calcination and sintering. A relative density over 95 percent of the theoretical density was achieved after the sintering process. Electrical conductivities of the sintered samples were measured using the impedance spectra method. The highest ionic conductivity value was found to be 5.28 × 10?2 S cm?1 at 1023 K (750 °C) for GSDC sintered at 1673 K (1400 °C) for 6 hours.  相似文献   

8.
Isothermal sections at 1250 and 1650 °C have been constructed for the Al2O3-ZrO2-Sm2O3 phase diagram, and phase equilibria at those temperatures have been demonstrated. No ternary compounds are found and nor are areas of solid solutions based on components and binary compounds in the system. Partially quasibinary sections Al2O3-F, SmAlO3-(66.7% ZrO2 · 33.3% Sm2O3), and Sm4Al2O9-F have been detected, which triangulate the ternary system, and a demonstration is given of the mechanism for penetration of a phase Sm2Zr2O7 with the structure of the pyrochlore into the middle of the Al2O3-ZrO2-Sm2O3 system.  相似文献   

9.
A separation procedure based on extraction chromatography using the di(2-ethylhexyl) phosphoric acid (D2EHPA) impregnated resin, anion exchange with DIAION SA 10 resin, and oxalate precipitation has been developed for the preparation of high-purity La2O3 in hydrochloric acid media at a high La concentration. The metallic impurities Ce, Pr, Nd, Sm, K, Mg, Ca, Zn, Cu, Co, Mn, Pb, Al, In, and Fe, but not Bi, were removed efficiently from La by extraction chromatography using a D2EHPA impregnated resin. The Bi was separated from the La by anion exchange (DIAION SA 10) separation. Thus, a high-purity LaCl3 solution was obtained by anion exchange separation and extraction chromatography. La2O3 was prepared from the purified LaCl3 solution by oxalate precipitation. Glow discharge mass spectrometry was applied for purity evaluation of the prepared La2O3. The purity of the prepared La2O3 was more than 99.9998 pct total rare earth oxide.  相似文献   

10.
Sulfation studies were conducted on CoO samples coated with a thin film of Na2SO4 and exposed at 600 to 900 °C in O2-SO2-SO3 environments containing 0.02 to 2 pct (SO2+SO3). Within this range of conditions, Co3O4 (s), CoSO4 (s), and liquid Na2SO4-CoSO4 solutions were observed as reaction products. At lower concentrations of SO3 where CoSO4 (s) was unstable, the reaction product consisted of a thick Co3O4 layer close to the CoO, a layer of Na2SO4-CoSO4 liquid, and large Co3O4 particles at the gas/salt interface. At higher concentrations of SO3, the reaction procuct was a two phase mixture of solid CoSO4 and an Na2SO4-CoSO4 liquid. In gas mixtures containing 0.15 pct and 1 pct (SO2+SO3), the highest reaction rates were observed at about 750 to 800 °C. Some of these results are quite similar to those observed during low temperature hot corrosion of cobalt-base alloys. The overall reaction mechanism has been described in terms of two processes: oxidation of CoO to Co3O4 and sulfation of cobalt oxides.  相似文献   

11.
Samarium (Sm) substituted bismuth titanate (Bi4Ti3O12, BT) nanoparticles with compositions of Bi4?xSmxTi3O12 (BSmT) (where x = 0.0, 0.25, 0.50, 0.75, 1.0) were prepared by using the gel combustion method. X-ray diffraction pattern of prepared nanoparticles confirmed that all the BSmT compositions were of the single phase orthorhombic structure with the space group of B2ab. The dielectric loss at 100 Hz varied from 0.0925 to 0.056 with an increase in Samarium content. Dielectric loss confirmed the lower leakage current of BSmT nanoparticles. The ferroelectric behavior of BSmT nanoparticles showed that the Bi3.50Sm0.50Ti3O12 had good ferroelectric property and also had minimum leakage current. The increase of coercive field (Ec) and the increase of remnant polarizations (Pr) were pronounced with the increase in Sm content confirming to the fact that the substitution of Sm3+ had improved the ferroelectric properties of BT.  相似文献   

12.
《Hydrometallurgy》1987,19(2):243-251
A zinc-lead bulk sulphide concentrate from Kirki (Greece) was leached in aqueous solution with HClH2O2at atmospheric pressure and 95°C to extract up to 97% zinc, 40% lead, 80% silver and less than 12% iron after 6 h. Highly pure PbCl2 crystallized from the leach filtrate on cooling. Sulphur was oxidized to the elemental form; its loss as sulphate ion in solution and residue was 7.5%. During leaching no emission of H2S or SO2 was detected. Conditions were determined for producing a pregnant solution (130 g/L Zn) low in iron and lead, to facilitate zinc extraction by electrolysis. Leaching experiments were conducted at 40% solids, 0.55 g HCl and 0.26 g H2O2 per gramme concentrate in a 1-L reactor. After a second leaching of the residue in aqueous solution with HCl (1 M) for 1 h at 90°C, the residual lead sulphate was extracted, so that total lead recovery was over 98%. Other values, such as silver and sulphur, could be recovered by additional treatment of either the leach solution or leach residue.  相似文献   

13.
ZnWO4:Sm powders with a Sm content of 0 to 10 at. pct have been prepared with wet chemical methods, and a variation of their luminescence property with the Sm content was studied for the first time. X-ray diffraction (XRD) analysis indicated that the synthesized powders all were single-phase sanmartinite ZnWO4 with monoclinic structure. The doped Sm3+ ions have not caused any significant change in the host structure, indicating Sm3+ ions were incorporated in the ZnWO4 structure. A scanning electron microscope (SEM) micrograph indicated that powders had uniform morphology and particle size approximately 10 to 150 nm, which decreased with increasing Sm3+ content. The synthesized ZnWO4 nanopowders showed broad emissions at blue-green bands near 460 nm and red emissions at 568.4 nm, 610.4 nm, and 649.4 nm. The blue-green emission decreased with increase in Sm3+ content, and the red emission reached maximum at Sm3+ content of 5 at. pct.  相似文献   

14.
The response to thermal exposure of ball-milled Cu-Mg/B2O3 powder blends was investigated in the current study to explore the potential of powder metallurgy route to produce Cu-B alloys. Cu-20Mg alloy powder was mixed with B2O3 and subsequently ball milled for 1 hour. Ball milling alone failed to establish a reaction between Cu-Mg compounds and B2O3. When the ball-milled powder blend was heated, however, B2O3 was reduced by CuMg2 <773 K (500 °C). The Cu2Mg intermetallic phase, which has survived until 773 K (500 °C), was involved in the reduction of the remaining B2O3 at still higher temperatures, while excess Mg reacted with B to produce MgB2 and MgB6 compounds. Cu-Mg alloy with predominantly the CuMg2 phase must be utilized to take advantage of the capacity of the CuMg2 (Cu-43 wt pct Mg) compound to reduce B2O3 at temperatures as low as 773 K (500 °C). Once the Cu-43Mg alloy powder is mixed with B2O3 and the powder blend thus obtained is ball milled and subsequently heated at 500 °C, B2O3 is readily reduced by CuMg2 to yield Cu, B, and MgO. The latter can be easily removed from the powder blend by acid leaching.  相似文献   

15.
Neue isothermische Abbauten und Aufbauten des Fe2O3 und Fe3O4 zwischen 1170 °C und 1420 °C. Wechselwirkungen zwischen Proben und Schiffchenmaterial. Randlöslichkeiten des Fe2O3 und Fe3O4. Keimbildungshemmungen der Hämatitphase. Aktivitäten des Fe3O4 in seinem Homogenitätsbereich. Erörterung des γ-Fe2O3 um 1350 °C als Kryptomodifikation.  相似文献   

16.
The isothermal section of the phase diagram of the Gd-Sm-Co ternary system at 773K was investigated by X-ray powder diffraction(XRD),differential thermal analysis(DTA),optical microscopy and scanning electron microscopy(SEM) techniques.The result shows that the isothermal section consists of 12 single-phase regions,16 two-phase regions and 5 three-phase regions.Five pairs of corresponding compounds of Gd-Co and Sm-Co systems,i.e.,Gd2Co17 and Sm2Co17,Gd2Co7 and Sm2Co7,GdCo3 and SmCo3,GdCo2 and SmCo2,Gd3Co and SmCo form continuous series of solid solutions.The maximum solid solubility of Sm in Gd 4Co3 and Gd12Co7 were about 7.2 at.% and 47.8 at.% Sm,respectively.The maximum solid solubility of Gd in Sm5Co19 and Sm5Co2 were about 4.7 at.% and 7.6 at.% Gd,respectively.The binary compounds Sm9Co4,GdCo5 and SmCo5 were not observed at 773K.No ternary compound was found.  相似文献   

17.
A sulphuric acid bake-leach process was investigated for the extraction of rare earth elements (REEs), uranium, and thorium from a monazite concentrate. X-ray diffraction analysis showed the formation of water-soluble sulphates that readily dissolved during the water leach step. Nearly complete extraction of REEs, uranium, and thorium was achieved when the concentrate was baked at 250°C for 4?h with a sulphuric acid to concentrate (S/C) weight ratio of 4:1. At the 1:1 sulphuric acid to concentrate ratio ~65% of REEs were leached while only ~2–5% of uranium and thorium were extracted. Temperature (180–250°C) had little effect on the extraction of REEs, but greatly affected the extraction of thorium and uranium. In general, the extraction of thorium and uranium decreased with an increase in temperature. The effect of particle size (48–137?µm) was also tested and found to have little effect on the extraction of REEs. Acid consumption was calculated and found to increase with longer baking times (0.3–0.8?g acid/g concentrate). The major mineralogical phases formed because of the sulphation reaction included potassium cerium sulphate hydrate (2K2SO4·Ce(SO4)2·2H2O), lanthanum sulphate hydrate (La2(SO4)3·2H2O), sodium praseodymium sulphite hydrate (NaPr(SO3)2·2H2O), and neodymium sulphate hydrate (Nd2(SO4)3·5H2O), all of which were water-soluble.  相似文献   

18.
The 7 wt% rare earth metal oxide promoted Ni-SiO2 catalysts of Ni-7Pr6O11-SiO2,Ni-7Nd2O3-SiO2,and Ni-7Sm2O3-SiO2 were prepared by the complex-decomposition method,and were comparatively evaluated for pressurized carbon dioxide reforming of methane(CRM) under severe conditions of 750℃,1.0 MPa,CH4/CO2=1,and gas hourly space velocity of 53200 mL/(g·h).The addition of r...  相似文献   

19.
The present work studies (0001) Al2O3 and (111) Al2MgO4 wetting with pure molten Al by the sessile drop technique from 1073 K to 1473 K (800 °C to 1200 °C) under Ar at PO2 10?15 Pa. Al pure liquid wets a smooth and chemically homogeneous surface of an inert solid, the wetting driving force (t,T) can be readily studied when surface solid roughness increases in the system. Both crystals planes (0001) Al2O3 and (111) Al2MgO4 have crystallographic surfaces with identical O?2 crystalline positions however considering Mg2+ content in Al2MgO4 structure may influence a reactive mode. Kinetic models results under similar experimental conditions show that Al wetting on (0001) Al2O3 is less reactive than (111) Al2MgO4, however at >1273 K (1000 °C) (0001) Al2O3 transformation occurs and a transition of wetting improves. The (111) Al2MgO4 and Al system promotes interface formations that slow its wetting process.  相似文献   

20.
This work described the preparation of dysprosium oxide, Dy2O3, nanoparticles using the homogeneous precipitation method. Dy3+ ions were precipitated using NaOH solution. The obtained product was filtered, dried, and then calcined for 1 h at the temperature range of 300–700 °C in static air. The calcination temperature of the Dy-precursor was chosen based on its decomposition as indicated by the TGA analysis. The crystalline structure and surface morphology of the calcined solids were studied by X-ray diffraction(XRD), field emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM) and X-ray photoelectron spectroscopy(XPS). The obtained results revealed that Dy2O3 with crystallites size of 11–21 nm was formed at 500 °C. Such value increased to 25–37 nm for the sample calcined at 700 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号