首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Er~(3+)/Yb~(3+) co-doped phosphate glasses(P_2O_5-Al_2O_3-BaO-BaF_2-K_2O-Er_2O_3-Yb_2O_3) with varying BaF_2 content,were prepared by a conventional melt quenching technique and their spectroscopic properties were examined through the Raman, absorption, emission and decay measurements. Raman spectra(350-1400 cm~(-1)) of the Er~(3+)/Yb~(3+) co-doped phosphate glasses with varying BaF_2 content, were recorded upon laser excitation at 785 nm. Near infrared luminescence spectra were measured in the1400-1600 nm region under 970 nm diode laser excitation and characteristic band was observed at1533 nm corresponding to ~4Ⅰ_(13/2)→~4Ⅰ_(15/2) transition of Er~(3+) ion. The decay curves for the ~4Ⅰ_(13/2) level of Er~(3+)ion, were measured and the lifetime is found to decrease from 7.94 to 7.70 ms when BaF_2 content increases from 0 to 8 mol% and then increases up to 7.83 ms with further increase in BaF_2 content(12 mol%). The emission cross-section.lifetime and figure of merit for the ~4Ⅰ_(13/2)→~4Ⅰ_(15/2) transition of Er~(3+) ion were evaluated and compared to the other host matrices. The upconversion luminescence was measured and intense red emission was observed for all the studied samples.  相似文献   

2.
Er~(3+)-modified 0.68 Pb(Mg_(1/3)Nb_(2/3))O_3-0.32 PbTiO_3(PMN-32 PT) single crystals were grown by using the flux method. The growth mechanism of the crystal and influences of Er~(3+) ions on phase structure,electrical and optical properties were investigated. Results reveal that the crystals are still pure perovskite structure with Er3+ ions doping, but lattice enlarges slightly. The coercive electric field is increased from 4.83 to 6.37 kV/cm for [100]-oriented crystals comparing to undoped PMN-32 PT single crystals.Moreover, the crystal exhibits upconversion emission properties. Green(531 and 552 nm) and red(670 nm) emission bands are recorded under the excitation of 980 nm diode laser, which correspond to the ~2 H_(11/2)→~4 I_(15/2), ~4 S_(3/2)→~4 I_(15/2) and ~4 F_(9/2)→~4 I_(15/2) transitions of Er~(3+) ions. Our results show the feasibility of using this crystal in photoelectric multifunctional devices.  相似文献   

3.
In this article upconversion luminescence of silver nanoparticles(AgNPs) coated NaYF_4:Er~(3+)/Yb~(3+)phosphor nano-particles was investigated.The prepared samples were characterized through various techniques.The surface plasmon band is observed for prepared AgNPs by analyzing UV-vis measurements and is used to enhance the upconversion emission.From the upconversion measurement the emission bands are observed at 522,546,and 656 nm corresponding to the ~2 H_(11/2)→ 4~1_(15/2),~4 S_(3/2)→~4 I_(15/2)and ~4 F_(9/2)→~4 I_(15/2) levels,respectively.The upconversion emission intensity of the above bands is found to enhance for sample containing 1 mmol AgNPs.Decay time of ~4 S_(3/2) and 4~F_(9/2) levels is found to decrease on coating of AgNPs and hence intensity enhancement is assumed due to the surface plasmon resonance(SPR) effect.  相似文献   

4.
An optical heater based on hexagonal NaGdF_4:Yb~(3+)/Er~(3+) is reported. XRD, SEM and EDS characterization results show that F~-/Ln~(3+) can not only control the phase composition, particle size and morphology, but also affect the effective doping concentration of Yb~(3+) and Er~(3+).When F~-/Ln~(3+) is 12/1, the strongest upconversion luminescence is obtained. Based on the luminescent temperature sensing behavior of Er~(3+),the photo-thermal conversion performance was investigated. The results indicate that the temperature of irradiation spot is linearly dependent on the power density, and the photo-thermal responsivity is determined to be 3.3K·cm~2/W. Also, it is found that the photo-thermal conversion efficiency can be regulated by changing the Yb~(3+) doping concentration. Compared with the nano-gold, copper sulfide and carbon nanotubes, the NaGdF_4:Yb~(3+)/Er~(3+) has the triple functions of upconversion luminescence, temperature sensing, and photo-thermal conversion, and may therefore be a promising optical heater for photo-thermal therapy of tumors.  相似文献   

5.
Tellurite glasses were generally applied in rare earth optical materials due to their excellent physical and chemical properties. In this study, novel tellurite glasses composed of TeO2-TiO2-La2O3 were prepared by conventional melting-quenching method. Some basic physical parameters such as density, refractive indices, transition temperature and crystalline temperature were measured. The structure was analyzed by Raman spectra. The absorption, upconversion and fluorescence spectra were measured by UV-Vis-NIR spectrophotometer and spectrofluorimeter. Under 980 nm laser excitation, upconversion luminescence centered at 531, 545 and 657 nm corresponding to the transition 4H11/24I15/2, 4S3/24I15/2 and 4F9/24I15/2 respectively, were observed. The effects of TiO2 concentration on structure and upconversion luminescence intensity were discussed. The result indicated that the upconversion intensity increased as the phonon concentration decreased. The fluorescence properties of Er3+ doped glass were also studied. The dominant peak centered at 1531 nm and full width at half maximum (FWHM) was 64 nm. The Er3+ stimulated emission cross-section was calculated on the basis of McCumber theory. The possible mechanism of upconvesion and fluorescence were proposed.  相似文献   

6.
Er3+-Tm3+-Yb3+ tri-doped BaMoO4 phosphors were synthesized by co-precipitation technique and characterized by X-ray diffraction analysis, absorption study and field emission scanning electron microscopy analysis. Upconversion as well as downconversion luminescence studies were performed by using near infrared (980 nm) and ultraviolet (380 nm) excitations. Energy level diagram, pump power dependence and colour coordinate study were utilized to describe the multicolor upconversion emission properties. Under single 980 nm diode laser excitation the dual mode sensing behaviour is realized via Stark sublevels and thermally coupled energy levels of the Tm3+ and Er3+ ions in the prepared tri-doped phosphors. A comparative fluorescence intensity ratio analysis for integrated emission intensities arising from the Stark sublevels {1G4(a) and 1G4(b)} and thermally coupled energy levels {2H11/2 and 4S3/2} of the Tm3+ and Er3+ ions, respectively was carried out in the prepared tri-doped BaMoO4 phosphors. The maximum sensitivity for thermally coupled energy levels of the Er3+ and Stark sublevels of the Tm3+ ion was reported. The developed phosphors could be useful in the display devices and optical thermometric applications.  相似文献   

7.
Gd_2O_3:Er~(3+) nanophosphors were fabricated by the combustion method in presence of Na_2 ethylene diamine tetra acetic acid(EDTA-Na_2) as fuel at not high temperature(≤350℃) within a very short time of 5 min.The added concentration of Er~(3+)ions in Gd_2O_3 matrix was changed from 0.5 mol% to 5.0 mol%.The X-ray diffraction pattern of samples indicates the monoclinic structure of Gd_2O_3:Er3+.The morphology and chemical composition analysis of the Gd_2O_3:Er~(3+) samples are characterized by a field emission scanning electron microscope(FESEM) and a Fourier-transform infrared spectrometer(FTIR).The photoluminescence(PL),photo luminescence excitation(PLE) and upconversion(UC) at room temperature of the prepared materials with different concentrations of Er~(3+) were investigated.The PL of Gd_2O_3:Er~(3+)nanomaterials are shown in visible at 545,594,623,648,688 nm under excitation at 275 nm.The emission bands from transitions of Er~(3+) from ~2P_(3/2) to ~4F_(9/2) are observed,UC luminescent spectra of the Gd_2O_3:Er~(3+)/silica nanocomposites under 976 nm excitation show the bands at 548 and 670 nm.The influence of excitation power at 980 nm for transitions were measured and calculated.The results indicate that the upconversion process of Gd_2O_3:Er~(3+)/silica is two photons absorption mechanism.The low temperature dependence of UC luminescent intensities of the main bands of Gd_2O_3:Er~(3+)was investigated towards development of a nanotemperature sensor in the range of 10-300 K.  相似文献   

8.
Er~(3+)-Yb~(3+)-Li~+:Gd_2(MoO_4)_3 and Er~(3+)-Yb~(3+)-Zn~(2+):Gd_2(MoO_4)_3 nanophosphors, synthesized by chemical co-precipitation technique were characterized through XRD,FESEM,dynamic light scattering(DLS),diffuse reflectance, photoluminescence, photometric and decay time analysis. The enhancement of about~28, ~149 and ~351 times in the green upconversion emission band is observed for the optimized Er~(3+)-Yb~(3+),Er~(3+)-Yb~(3+)-Li~+ and Er~(3+)-Yb~(3+)-Zn~(2+):Gd_2(MoO_4)_3 nanophosphors in comparison to the singly Er~(3+) doped nanophosphors. The electric dipole-dipole interaction is found to be responsible for the concentration quenching. The temperature dependent behaviour of the two green thermally coupled levels of the Er~(3+) ions based on the fluorescence intensity ratio technique was studied. The maximum sensor sensitivity ~38.7 × 10~(-3) K~(-1) at 473 K for optimized Er~(3+)-Yb~(3+)-Zn~(2+) codoped Gd_2(MoO_4)_3 nanophosphors is reported with maximum population redistribution ability~88% among the ~2H_(11/2) and ~4S_(3/2) levels.  相似文献   

9.
The present work reports the synthesis, characterization, photoluminescence and photocatalytic activity of Eu~(3+)(1 mol%-11 mol%) doped and Li~+(0.5 mol%-5 mol%) co-doped Bi_2 O_3 nanophosphors(NPs) by sonochemical method. The average particle size was estimated using powder X-ray diffraction(PXRD)and transmission electron microscopy(TEM) and is found to be in the range of 30-35 nm. The scanning electron microscopy(SEM) images were highly dependent on sonication time and concentration of epigallocatechin gallate(EGCG) bio-surfactant. The energy gap of doped and co-doped Bi_2 O_3 nanophosphors was estimated using Kubelka-Munk(K-M) function and is found to be in the range of2.9-3.08 eV. The effect of Li+ co-doping on luminescence of optimized Bi_2 O_3:Eu~(3+) was studied and is found about more than 3 fold enhancement of emission intensity. Judd-Ofelt parameters(Ω_2, Ω_4 and Ω_6).transition probabilities(A_T), quantum efficiency(η), luminescence lifetime(τ_(rad)), color chromaticity coordinates(CIE) and correlated color temperature(CCT) values were estimated from the emission spectra and are discussed in detail. The estimated CIE chromaticity co-ordinates are very close to the NTSC(National Television Standard Committee) standard value of red emission. The synthesized NPs show excellent photocatalytic activity of acid red-88 under UV-light irradiation, which can degrade 98.1% in60 min. The decreasing electron-hole pair recombination rate with quick electron transfer ability is predominantly ascribed to the balance between crystallite size, morphology, band gap, defects, surface area, etc. These results show a light for the use of sonochemical route of Bi_2 O_3:Eu~(3+):Li~+ in solid state display and photocatalytic applications.  相似文献   

10.
The crystal structure and surface morphology of the Er3+/Yb3+/Na+:ZnWO4 phosphors synthesized by solid state reaction method were analyzed by X-ray diffraction(XRD) and field emission scanning electron microscopy(FESEM) analysis.The frequency upconversion(UC) emission study in the developed phosphors was investigated by using 980 nm laser diode excitation.The effect of codoping in the Er3+:ZnWO4 phosphors on the UC emission intensity was studied.The UC emission bands that are exhibited in the blue(490 nm),green(530,552 nm),red(668 nm) and NIR(800 nm) region correspond to the 4F7/24I15/2.2H11/2,4S3/24I15/2,4F9/24I15/2 and 4I9/2→4I15/2 transitions,respectively.The temperature sensing performance of the Er3+-Yb3+-Na+:ZnWO4 phosphors was investigated based on the 2 H11/24I15/2 and 4S3/24I15/2 thermally coupled transitions of the Er3+ions.The photometric study was also carried out for the developed phosphors.  相似文献   

11.
Investigation on the bright and stable upconversion(UC) phosphors with multicolor emissions is fundamental and significant for the frontier applications of display and tempe rature probe.He re,dive rse emitting colors with blue,cyan and yellowish green,which are caused by the energy transfer and crossrelaxation processes,are obtained by altering Er~(3+),Tm~(3+)and Yb~(3+) concentrations in Er~(3+)singly,Er~(3+)-Tm~(3+)-Yb~(3+)co-and tri-doped double perovskite La_2 ZnTiO_6(LZT) phosphors synthesized by a simple solid-state reaction.In addition,excellent infrared emission at 801 nm located at "first biological windo w" is collected in Tm~(3+)-Yb~(3+)co-doped phosphors.Meanwhile,the temperature sensing properties based on the thermally coupled levels(~2 H_(11/2)/~4S_(3/2)) of Er~(3+) ions were analyzed from 298 to 573 K of LZT:0.15 Er~(3+)/0.10 Yb~(3+)phosphor,demonstrating that the maximal sensitivity value is about56×10-4 K~(1-) at 448 K.All these results imply that this kind of UC material has potential applications in display,bioimaging and optical device.  相似文献   

12.
In the present communication,various fluxes blended Y_2 O_3:Eu~(3+)(5 mol%) nanopowders(NPs) were successfully fabricated by solution combustion method.PXRD pattern confirms body-centered cubic structure of the prepared samples.Energy band gap(Eg) of the fabricated products was estimated and is found to be in the range of 3.13-3.32 eV.Photoluminescence(PL) emission spectra exhibit sharp and intense peaks at ~579,592,614,657,704 nm corresponding to ~5 D_0→~7 F_J(J = 0,1,2,3 and 4) transitions of Eu~(3+) ions.Significance of fluxes for enhancing the PL emissions was extensively studied.Photometric studies of the prepared samples are located in pure red region.Optimized NPs were explored as a novel sensing agent for visualization of latent fingerprints(LFPs) on various surfaces including porous,semiporous and non-porous surfaces followed by powder dusting technique.Various experiments including aging,temperature,scratching and aquatic fresh water treatment tests were performed to evaluate applicability of the fabricated NPs.Visualized LFPs exhibit well defined ridge details including most authenticated sweat pores are also revealed with high sensitivity,selectivity,little background hindrance and less toxicity.Aforementioned results evidence that the method and fabricated NPs can be considered to be simple,rapid and economical and provide novel sensing platform for LFPs visualization in prospective forensic applications.  相似文献   

13.
A series of YNbO4:Bi3+ and YNbO4:Bi3+/Er3+ phosphors were prepared by a conventional high temperature solid–state reaction method. The results of XRD and Rietveld refinement confirm that monoclinic phase YNbO4 samples are achieved. The down-/up-conversion luminescence of Er3+ ions was investigated under the excitation of ultraviolet light (327 nm) and near infrared light (980 nm). Under 327 nm excitation, broad visible emission band from Bi3+ ions and characteristic green emission peaks from Er3+ ions are simultaneously observed, while only strong green emissions from Er3+ ions are detected upon excitation of 980 nm. Remarkable emission enhancement is observed in down-/up-conversion luminescence processes by introducing Bi3+ ions into Er3+-doped YNbO4 phosphors. Pumped current versus up-conversion emission intensity study shows that two-photon processes are responsible for both the green and the red up-conversion emissions of Er3+ ion. Through the study of the temperature sensing property of Er3+ ion, it is affirmed that the temperature sensitivity is sensitive to the doping concentration of Bi3+ ions. By comparing the experimental values of the radiative transition rate ratio of the two green emission levels of Er3+ ions and the theoretical values calculated by Judd-Ofelt (J-O) theory, it is concluded that the temperature sensing property of Er3+ ions is greatly affected by the energy level splitting.  相似文献   

14.
BiOCl crystal shows potential as efficient optical host due to its special layered structure. Here,the luminescence properties of the Er~(3+)/Sm~(3+) co-doped BiOCl phosphors as single-phase phosphors were reported. Upon near ultraviolet excitation(NUV, 380 nm corresponding the ~4 I_(15/2)→ ~4 G_(11/2) transition of Er~(3+) ions), the phosphors exhibit the efficient characteristic emissions of Er~(3+) and Sm~(3+) ions simultaneously. The energy transfer(ET) from Er~(3+) to Sm~(3+) ions in the layered crystals has been validated by the variation of emission intensities and decay lifetimes respectively, which is ascribed to be a dipoledipole interaction. By virtue of the ET behavior and increasing Sm~(3+) ion concentration, the enhancing emission intensity of Sm~(3+) and the tunability of emission color from yellowish-green(0.318, 0.420) to white(0.343, 0.347) are realized. The results of our work indicate that the Er~(3+)/Sm~(3+) co-doped BiOCI phosphor has a promising application serving as single component white emitting phosphors for NUV excited WLEDs.  相似文献   

15.
The Er3+doped double perovskite Ba2 CaWO6 crystal is a promising ratiometric thermometer based on the fluorescence intensity ratio(FIR) of transitions from 2 H11/2 and 4 S3/2to the lowered 4 I15/2 level.However,the Ca2+vacancy defect caused by the charge difference between rare-earth ions and the substituted alkaline-earth ions gives rise to the non-radiative probability and limits the t...  相似文献   

16.
Er3+/Yb3+-codoped transparent oxyfluoride borosilicate glass ceramics containing Ba2GdF7 nanocrystals were prepared and spectroscopic properties of rare earth ions were investigated.Fluoride nanocrystals Ba2GdF7 were successfully precipitated in glass matrix,which was confirmed by X-ray diffraction(XRD)and transmission electron microscopy(TEM)results.In comparison with the as-made precursor,significant enhancement ofupconversion luminescence was observed in the Er3+/Yb3+codoped oxyfluoride glass ceramics,which may be due to the variation of coordination environment around Er3+and Yb3+ions after crystallization.The transition mechanisms of the green and red upconversion luminescence were ascribed to a two-photon process,and that of the blue upconversion luminescence was a three-photon process.  相似文献   

17.
(Y_(0.87)La_(0.1)Zr_(0.03))_2O_3 nanopowders doped with various concentrations of Tm~(3+) and Ho~(3+) were prepared by the citrate method. The standard cubic Y_2O_3 phase can be matched in the Tm~(3+)/Ho~(3+) co-doped(Y_(0.87)La_(0.1)Zr_(0.03))_2 O_3 nanopowders. The nanopowders exhibit average particle sizes of 40,60, 80 and 100 nm after calcinated at 900,1000,1100 and 1200℃,respectively. The energy transfer from Tm~(3+) to Ho~(3+) and the optimum fluorescence emission around 2 μm were investigated. Results indicate that the emission bands at around 1.86 and 1.95 μm correspond to ~3 F_4→~3 H_6 transition of Tm~(3+) and ~5 I_7→~5 I_8 transition of Ho~(3+), respectively.Better spectral properties were achieved in Tm~(3+)/Ho~(3+) co-doped(Y_(0.87)La_(0.1)Zr_(0.03))_2O_3 nanopowders with the average size of 100 nm obtained at the conditions of the treatment of precursors calcinated at 1200 ℃ for 2 h doped with 1.5 mol% Tm~(3+) and 1 mol% Ho~(3+).  相似文献   

18.
A series of Ln3+ (Ln3+ = Er3+/Dy3+) ions doped Na2NbAlO5 (NNAO) phosphors were synthesized by solid-state method. The Er3+ and Dy3+ ions doped phosphors were characterized by XRD, photoluminescence (PL) and decay profiles. The Ln3+-doped samples are consistent with the pure NNAO phase which is analyzed by the X-ray diffraction result. The PL graphs show that the intensity of luminescence increases with the increasing doping concentrations up to their critical certain values and then decreases at higher concentrations due to the concentration quenching effect of Er3+/Dy3+ ions. The energy level diagrams containing the positions of 4f and 5d energy levels of Er3+ and Dy3+ ions have been established and studied. In addition, under the ultraviolet light, the prepared NNAO:xLn3+ (Ln3+ = Er3+/Dy3+) phosphors show the characteristic green (Er3+), cyan (Dy3+) emission, respectively. Under the excitation of 365 nm, the quantum efficiencies of NNAO:0.01Er3+ and NNAO:0.03Dy3+ phosphors are measured to be 61.7% and 72.2%, respectively. The obtained results indicate that the new NNAO:xLn3+ (Ln3+ = Er3+/Dy3+) phosphors are promising applications in white-light emitting diodes field.  相似文献   

19.
A series of Eu~(2+),Tb~(3+)-codoped Sr_3 Y(PO_4)_3(SYP) green phosphors were synthesized by hightemperature solid-state reaction. Several techniques, such as X-ray diffraction, UV-vis spectrum,and photoluminescence spectrum, were used to investigate the obtained phosphors. The present study investigates in detail photoluminescence excitation and emission properties, energy transfer between the two dopants, and effects of doping ions on optical band gap. SYP:0.05 Eu2+ phosphor shows an intense and broad excitation band ranging from 220 to 400 nm and exhibits a bright green emission band with CIE chromaticity coordinates(0.189, 0.359) under 350 nm excitation. Green emission of SYP:0.03 Tb3+ is intensified by codoping with Eu~(2+), and energy transfer mechanism between them is demonstrated to be a dipole-dipole interaction. Upon 350 nm excitation, SYP:Eu~(2+),Tb~(3+) phosphors exhibits two dominating bands peaking at 466 and 545 nm, which are assigned to 4 f~65 d~1→4 f~7 transition of Eu~(2+) ions and ~5 D_4→~7 F_5 transition of Tb~(3+) ions, respectively. Optimal doping concentrations of Eu~(2+) and Tb~(3+) in the SYP host are 5 mol% and 15 mol%, respectively. Results indicate that SYP:Eu~(2+),Tb~(3+) phosphors are potentially used as green-emitting phosphors for white light-emitting diodes.  相似文献   

20.
In very recent years,ultraviolet(UV) persistent luminescent materials(PLMs) have attracted widespread attention due to their potential biological applications.However,owing to the lack of suitable emitters and hosts,the design and development of excellent UV PLMs remain challenging.Here,we report a new Gd-based PLM NaGdGeO4:Bi3+ with super-long UVA persistent luminescence(PersL).By further codoping Li+ ions to increase the concentration of traps,the UVA PersL int...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号