首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this investigation, thermal simulated specimens were used to investigate the effect of second peak temperature during in-service welding on characteristic fracture energy and microstructure feature of the subcritically (SC), intercritically (IC), supercritically (SCR), and unaltered (UA) reheated coarse grain heat-affected zones (CGHAZs). The API X70 high-strength pipeline micro-alloyed steel was subjected to processing during in-service welding by applying double thermal cycle shielded metal arc welding process with heat input of 9.3 kJ/cm and thermal cycles to simulate microstructure of reheated CGHAZs. This consisted of first thermal cycle with a peak temperature of 1350 °C, then reheating to different second peak temperatures of 600, 800, 1000, and 1200 °C with a constant cooling rate of 60 °C/s. Toughness of the simulated reheated CGHAZs were assessed using Charpy impact testing at −20 °C, and the corresponding fractographs, optical micrographs, and electron micrographs have been examined. It is found that accelerating cooling rate during in-service welding has an improving effect on the microstructure of CGHAZs. Owing to small heat-input and accelerating cooling, the grain size in reheated CGHAZs is relatively small and the brittle microphases are eliminated or minimized. The Charpy impact results show that the CGHAZ fracture energy is improved after the second thermal cycle. The SC CGHAZ showed higher absorbed impact energy and the IR CGHAZ had less absorbed energy, but the phenomenon of embrittlement in IR CGHAZ is not serious. Therefore, it can be concluded that the fracture energy of CGHAZ and IR CGHAZ can be improved by accelerating cooling with appropriate cooling rate.  相似文献   

2.
690 MPa级低合金高强钢焊接接头组织性能   总被引:1,自引:1,他引:0  
为探讨690 MPa级低合金高强钢焊接接头组织与性能的关系,采用手工电弧焊(SMAW)和埋弧焊(SAW)获得成形良好的焊接接头,经过拉伸、冲击、弯曲试验及光学显微镜、扫描电镜和透射电镜分析,对两种焊接方法的接头组织性能进行研究.结果表明:两种焊接方法的焊缝组织主要为板条状贝氏体和少量针状铁素体,粗晶区为粗大贝氏体和少量马氏体;焊缝中含有大量分布均匀的微小球形夹杂物;两种焊接方法所得焊接接头都具有较高力学性能,-50℃的冲击断口形貌为韧窝、准解理混合型;埋弧焊焊缝冲击韧性低于手工电弧焊,手工电弧焊熔合线处冲击吸收功小于埋弧焊,但随距熔合线距离增加其值增加更快.显微组织和夹杂物是影响接头性能的主要因素.  相似文献   

3.
陈玉华  王勇 《材料科学与工艺》2009,17(2):178-180,185
为探讨在役焊接这种严酷的焊接条件下管线钢焊接热影响区显微组织的变化,采用焊接热模拟技术、金相分析及透射电镜对比研究了X70管线钢在役焊接热影响区和常规焊接热影响区的金相组织和精细结构.结果表明,在役焊接的快速冷却只对粗晶区的金相组织产生了较大影响,而对过渡区、细晶区和类母材区的金相组织几乎没有影响.金相显微镜下两者粗晶区的组织均为贝氏体铁素体和粒状贝氏体,但各组织的形态和数量不同.在透射电镜下观察,两者粗晶区的精细结构有较大差异,在役焊接粗晶区生成了少量细小的横穿贝氏体铁素体板条的板条马氏体,常规焊接粗晶区生成了少量的块状铁素体组织.  相似文献   

4.
The influence of weld thermal simulation on ICGC HAZ microstructure and mechanical properties of Cu containing Nb-Ti-microalloyed steel has been investigated. Low heat input of 0.7 kJ/mm (simulated fast cooling of Δt 8/5 = 5 s) and high heat input of 4.5 kJ/mm (simulated slow cooling of Δt 8/5 = 61 s) were used to generate double-pass thermal cycles with peak temperatures of 1350 and 800 °C, respectively. The microstructure after high heat input mainly consisted of polygonal and quasi-polygonal ferrite (QF) grains with certain amount of acicular ferrite, whereas, after the low heat input, microstructure mainly consisted of lath or elongated bainite–ferrite, QF and M–A constituents. The size of ferrite grains decreased and volume of M/A constituents increased with fast cooling rate. The precipitation characteristics were found to be similar in both cooling rates. However, the precipitation of Cu-related phases was promoted by slow cooling rate. By fast cooling rate, the investigated steel exhibited an increase in hardness from 187HV to 197HV. Consequently higher yield strength with considerable loss in the (−10 °C) CTOD fracture toughness (δfast cooling = 0.86 mm and δslow cooling = 1.12 mm) were demonstrated.  相似文献   

5.
研究了热输入对06CuNiCrMoNb钢焊接热影响区不同部位组织和性能的影响,重点分析了粗晶区的韧性与组织之间的关系。结果表明,模拟焊接热影响区没有出现"软化"现象,但是当线能量大于30kJ/cm情况下,粗晶区低温韧性迅速下降。对粗晶区的分析显示,线能量17kJ/cm条件下贝氏体铁素体呈细小板条状,在板条间存在着残余奥氏体薄膜,随线能量的增大,块状的铁素体数量增多,并且出现不规则片状M+A组元。  相似文献   

6.
目前,关于焊接方法对X90管线钢焊接接头组织性能的影响相关报道较少。采用手工电弧焊(SMAW)、熔化极气体保护焊(GMAW)、埋弧焊(SAW)3种焊接方法对X90管线钢进行对接焊。利用金相显微镜(OM)、扫描电镜(SEM)及能谱仪(EDS)对焊接接头及冲击断口进行显微组织及成分分析,分析了焊接方法对X90管线钢焊接接头组织性能的影响规律。结果表明:焊缝区组织主要为粒状贝氏体和针状铁素体;SMAW粗晶区组织主要为多边形铁素体、粒状贝氏体及M/A组织,GMAW和SAW粗晶区组织主要为粗大的铁素体、粒状贝氏体及板条贝氏体;3种焊接接头硬度分布趋势一致,盖面层硬度最高;SMAW、GMAW和SAW焊接接头抗拉强度依次为714,771,790 MPa,断后伸长率依次为23.3%,22.9%,20.0%;SAW与GMAW熔合线处20℃冲击吸收功比SMAW高约40 J,断裂机制为微孔聚集型,在韧窝底部有金属碳化物粒子析出。  相似文献   

7.
1.IntroductionThedifferentpartsintheheat-affectedz0neofthehighstrengthsteelexperienceddifferentweldthermalcycles,inwhichthechangeofmicrostructureandper-formanceinthecoarsegrainheat-affectedzone(CG-HAZ)nearthefusionzoneismost0bvious,andcoldcrackingiseasytobeproducedandspreadinthiszone.CGHAZwasconsideredasone0fthem0stweakpositioninwholeweldingjoilltzone,andllu-merousinvestigatorshavepaidcl0seattentiontotheCGHAZl1'2].HQ130steel,whichhastensilestrength(UTs)ofmorethan1300MPa,isanewlydevelop…  相似文献   

8.
1 200 MPa级HSLA钢的SH-CCT曲线及其热影响区组织与性能   总被引:1,自引:1,他引:0  
为在工程应用中对焊接工艺的合理选取与制定提供理论和试验依据,采用焊接热模拟技术研究了800~500℃冷却时间(t8/5)对1 200 MPa级低合金高强钢焊接热影响区粗晶区(CGHAZ)显微组织和性能的影响.结果表明:t8/5为6~20 s时,该钢热影响区的粗晶区组织为板条马氏体,硬度为477~456 HV5;随着冷却时间的延长,组织中开始出现板条贝氏体,在t8/5为60 s时硬度下降到380 HV5;当t8/5为60~600 s时,粗晶区组织为板条贝氏体和粒状贝氏体,硬度为380~300 HV5;t8/5600 s时粗晶区组织主要为粒状贝氏体,硬度为300~315 HV5.试验钢碳当量为0.626%,冷裂纹敏感系数为0.335%,说明其淬硬倾向较大,焊接热影响区容易产生裂纹.  相似文献   

9.
采用焊接热模拟的方法,研究了氮含量对实验钢焊接粗晶热影响区(CGHAZ)显微组织和韧性的影响规律。结果表明:随着氮含量的增加,CGHAZ的组织从晶界铁素体、贝氏体和侧板条铁素体转变成针状铁素体、多边形铁素体和少量的贝氏体,且铁素体晶粒细化;CGHAZ韧脆转变温度(FATT50)先降低后升高,屈服强度升高。氮含量从0.004 4%增加到0.009 4%时,有效晶粒尺寸减小,导致CGHAZ的FATT50降低;氮含量从0.009 4%增加到0.019 0%时,CGHAZ中固溶氮、屈服强度增量对FATT50的综合作用大于晶粒的细化作用,导致FATT50升高。  相似文献   

10.
Microstructure, precipitates and fracture morphology in the coarse grained heat-affected zone CGHAZ) of a new high-purity 0Cr18Mo2Ti ferritic stainless steel were studied by means of optical metallography, SEM, TEM, X-ray diffractometer, etc. Experimental results indicated that grain coarsening resulted in brittle fracture in the CGHAZ of 0Cr18Mo2Ti steel. The reduction of impact toughness in the CGHAZ due to change of cooling rate can be attributed to the increase of nitrides (TiN, Cr2N, etc). These nitrides in the CGHAZ promote initiation and propagation of brittle cracks. The precipitated Cr2N nitrides in the grain boundaries decrease impact toughness in the CGHAZ of 0Cr18Mo2Ti steel by promoting crack initiation. In practical applications, the welding heat input (E) should be as low as possible to prevent toughness reduction in the CGHAZ.  相似文献   

11.
为研究焊接对800 MPa级Ti、Nb复合微合金化析出强化超细晶粒钢组织性能的影响.运用Gleeble3500热模拟试验机,对实验钢进行单道次焊接热循环试验,并研究冷却速度、冷却时间t8/5对焊接热影响区粗晶区(CGHAZ)组织、性能的影响.结果表明:冷却速度5~15℃/s,CGHAZ的组织为贝氏体,冷却速度进一步增大,会出现马氏体.随着冷却时间t8/5的增加,原奥氏体晶粒尺寸逐渐增加,硬度值逐渐降低,冲击韧性先上升后下降.t8/5为20~120 s时,CGHAZ显微硬度(223~250.4 HV)均小于母材的显微硬度(270.6 HV),出现软化现象,t8/5为20 s时,冲击吸收功最高,为18.2 J,但仅有母材的25.3%.经历焊接热循环后,奥氏体晶粒粗化以及CGHAZ出现贝氏体组织是导致脆化的主要原因.  相似文献   

12.
使用OM、SEM、EPMA、EBSD等手段并进行热膨胀和冲击等实验,研究了C和W元素对第四代钠冷快堆用低合金Cr-Mo钢钨极氩弧焊(TIG)熔敷金属微观组织和冲击韧性的影响.结果 表明:多道次焊接热循环使多层多道焊缝金属的组织分布不均匀,分为表层焊缝组织和中间焊缝组织.表层焊缝组织,可分为熔化区(MZ)、粗晶区(CGH...  相似文献   

13.
The effect of welding thermal cycle simulation on the microstructure and mechanical properties of X90 pipeline steel was investigated by means of microstructure analysis, tensile- and Charpy impact-tests. At the heat input of 15 kJ/cm, the microstructure of coarse-grained heat affected zone is mainly composed of lath bainite and granular bainite, resulting in excellent strength and toughness. At 25 kJ/cm with two thermal cycles, however, strength and impact toughness decrease due to the formation of more polygonal ferrite with coarser grains.  相似文献   

14.
The objective of this paper is to study the influence of the second peak temperature during real and simulated welding on properties of the subcritically (S), intercritically (IC) and supercritically (SC) reheated coarse grained heat affected (CGHAZ) zones. The X80 high strength pipeline microalloyed steel was subject to processing in a double-pass tandem submerged arc welding process with total heat input of 6.98 kJ/mm and thermal cycles to simulate microstructure of reheated CGHAZ zones. This involved heating to a first peak temperature (TP1) of 1400 °C, then reheating to different second peak temperatures (TP2) of 700, 800 and 900 °C with a constant cooling rate of 3.75 °C/s. Toughness of the simulated reheated CGHAZ regions were assessed using Charpy impact testing at 0 °C, −25 °C and −50 °C. The microstructure of the real and simulated reheated CGHAZ regions was investigated using an optical microscope and field emission scanning electron microscope. Morphology of the martensite/austenite (MA) constituent was obtained by the use of a field emission scanning electron microscope. The blocky and connected MA particles, along prior-austenite grain boundaries, act as a brittle phase for the initiation site of the brittle fracture. Charpy impact results indicated that IC CGHAZ had less absorbed energy with higher transition temperature and hardness. The SC CGHAZ region showed higher absorbed impact energy with lower hardness. Design of multipass weld joints with less IC CGHAZ regions can result in a higher toughness property.  相似文献   

15.
X80管线钢焊接粗晶区韧化因素的研究   总被引:1,自引:0,他引:1  
采用热模拟技术研究了不同热循环对X80管线钢焊接粗晶区低温冲击韧度的影响.实验结果表明,随着冷却时间t8/5的增加,第二相粒子的数量减少且出现聚集现象,晶粒尺寸增加,但是当t8/5小于6.8s时,粒状贝氏体含量较高,板条束贝氏体细小且方向性较弱,试样的冲击韧性较高;而当t8/5超过6.8s后,粒状贝氏体含量逐渐下降,板条贝氏体逐渐粗大、平行,试样韧性又逐渐降低.M-A组元由于其含量低,尺寸小,对韧性的影响不显著.因此为提高焊接粗晶区的韧性,应采用小线能量和合适的预热温度来控制晶粒尺寸和组织形态.  相似文献   

16.
The effects of Cu and Al addition on the microstructure and fracture in the coarse-grained heat-affected zone (CGHAZ) of high-strength low-alloy steels with superior toughness were studied and compared with the X70 pipeline base steel counterpart. The microstructure in base steel was dominated by a small fraction of acicular ferrite and predominantly bainite. However, acicular ferrite microstructure was obtained in Cu-bearing steel, which nucleated on complex oxide with outer layer of MnS and CuS because of Cu addition. The microstructure in Al-bearing steel consisted of bainite with ultrafine martensite–austenite constituent, which was refined by Al addition. CGHAZ in Cu-bearing and Al-bearing steels had superior impact toughness and ductile fracture, which were attributed to acicular ferrite and ultrafine martensite–austenite constituent, respectively.  相似文献   

17.
为制定合理的焊接工艺,保证焊接质量,设置不同焊接热输入进行了10CrNi3MoV钢MAG焊接。采用微观组织分析、断口观察、力学测试等手段研究了焊接热输入对接头组织及性能的影响。结果表明,热输入较小时(E=11.0 kJ·cm-1E=14.4 kJ·cm-1),焊缝组织以针状铁素体为主,并含有部分粒状贝氏体、先共析铁素体等;热输入较大时(E=18.1 kJ·cm-1),针状铁素体占比降低,粒状贝氏体、先共析铁素体等增多,组织粗化。随热输入的增大,粗晶区晶粒粗化,组织由板条马氏体逐步转变为板条贝氏体,板条界限模糊,并有粒状贝氏体出现;焊缝金属强度降低,冲击韧性先略有升高后显著降低,断裂形式由微孔聚缩型韧断变为准解理/韧性混合断裂。热输入E=14.4 kJ·cm-1时,焊缝组织以细密的针状铁素体为主,具有最佳强韧性匹配。  相似文献   

18.
The electron beam local post-weld heat treatment (EBLPWHT) is a rather new method that provides the advantages of high precision, flexibility and efficiency, energy saving and higher productivity. This paper studies the effect of two post-weld heat treatment processes on the microstructure, mechanical properties and fracture toughness of an electron beam welded joints in 30CrMnSiNi2A steel. EBLPWHT, in a vacuum chamber, immediately after welding and a traditional furnace whole post-weld heat treatment (FWPWHT) were compared. The experimental results show that, after EBLPWHT treatment, the main microstructure of weld was changed from coarse acicular martensite into lath rnartensite, HAZ was changed from lath martensite, bainite into lower bainite, and base metal was changed from ferrite and pearlite into upper bainite and residual austenite. The microstructures of different zones of joints in FWPWHT condition were tempered sorbite. The properties of welded joints can be improved by the EBLPWHT in some extent, and especially largely for the fracture toughness of welded joints. However the value of fracture toughness of base metal is comparatively low, so appropriate heat treatment parameters should be explored in the future.  相似文献   

19.
Martensite–austenite (M–A) constituent formed during welding is generally recognized as an important factor to decrease the toughness of welded joint. In this article, the morphology and chemical composition of M–A constituent in the low carbon bainitic steel welded joint was analysed in detail by means of optical microscope, transmission electron microscope and scanning electron microscope with electron probe microanalysis. The experimental results show that the M–A constituent formed in the different sub-zones presents different morphologies and different amounts. The maximum amount of M–A constituent occurs in the coarse grained heat affected zone (HAZ). It is evident that the carbon atoms segregate on the M–A constituent and carbon concentration on the slender M–A constituent is higher than that on the massive M–A constituent. Meanwhile, the distribution profile of silicon on the M–A constituent shows an obvious inhomogeneity. Most of M–A constituents have a twinned structure and/or a high dislocation density. According to impact testing results, the crack initiation energy in the HAZ specimens deteriorates significantly because the large M–A constituent can assist the formation of cleavage crack. On the other hand, the coarse prior austenite grain in the HAZ lowers the crack propagation energy.  相似文献   

20.
采用焊条电弧焊对48 mm厚高强度结构钢进行焊接,对焊接接头热影响区疲劳裂纹扩展门槛值ΔKth、裂纹扩展速率da/dN和断裂韧度KIC进行研究并与基体进行对比。结果表明,在室温下,焊接接头热影响区具有更好的疲劳和断裂性能;随着与熔合线距离的增大,热影响区的组织依次为粗大板条状贝氏体+奥氏体薄膜、细粒状贝氏体、回火索氏体+细粒状贝氏体,硬度逐渐下降;在室温下,焊接接头热影响区和基体冲击韧性均位于上平台。热影响区的残余奥氏体薄膜和硬度较高的贝氏体是影响其疲劳和断裂性能的重要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号