首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
2.
SF6/N2混合气体具有绝缘性能良好、环境效益好等优点,被认为是能替代SF6的最具发展前景的气体之一,但SF6/N2混合气体在不同场景下的混合比问题尚缺乏研究。文中在保证气体绝缘输电线路(GIL)绝缘水平的前提下,建立多物理场耦合计算模型,从混合气体热特性的角度出发,分析不同绝缘气体压强、负载电流和环境温度下SF6/N2混合比与GIL温升之间的关系,为GIL在不同场景下选择合适的SF6/N2混合比提供依据。结果表明:绝缘气体压强和相同压强下SF6含量均与GIL温升呈负相关关系;设备的负载电流长期超过3 kA时,建议SF6含量为40%~60%;设备运行在中低纬度地区时,建议SF6含量为40%~70%,运行在高纬度地区时,建议SF6含量为30%~40%。此外,由于设计GIL设备时考虑了安全裕度,因此通常SF<...  相似文献   

3.
《高压电器》2017,(10):36-43
由于直流气体绝缘金属封闭输电线路(GIL)具有传输容量大、电能损耗小、可靠性高和全寿命输电成本合理等优点,因此可在特殊环境下,如高落差、隧道和远距离大容量输电等场合替代架空输电线。而限制直流GIL在输电线路上大规模运用的一个重要原因就是自由金属微粒的干扰,因此有必要掌握自由金属微粒在直流电压下的运动和放电特性。文中总结了国内外关于直流电压下SF6气体中自由线形金属微粒运动与放电特性的研究,以期对工程建设和学术研究起到参考作用。首先介绍了线形金属微粒在直流电压下的受力分析及起跳电压计算模型;然后总结了线形金属微粒在GIL中可能的运动形式,以及当存在轴向不均匀电场时的运动情况;进而分析了线形微粒在直流电压下的电晕放电规律;最后,揭示了线形金属微粒对SF6气体间隙击穿的影响机制。  相似文献   

4.
5.
通过理论分析对SF_6/N_2混合气体的工频击穿特性进行了研究,得出SF_6/N_2混合气体中SF_6气体的最优比例是20%~30%,同时在其他条件不变的情况下将混合气体压力提高至1.4倍即可具备与纯SF_6气体相同的工频击穿电压。试验结果也验证了分析结论的正确性,表明SF_6/N_2混合气体代替纯SF_6气体作为绝缘介质是完全可行的。  相似文献   

6.
N2/SF6混合气体在气体绝缘管道电缆中的应用   总被引:4,自引:0,他引:4  
王琦  邱毓昌 《电线电缆》2004,(1):28-29,32
本文论述了N2/SF6混合气体的优点及其应用于气体绝缘管道电缆(GIC)的可能性,认为N2/SF6的混合气体应用于GIC具有重要的社会和经济意义。  相似文献   

7.
SF6/N2混合气体断路器的检修   总被引:1,自引:1,他引:0  
针对目前新出现的,用于我国北方寒冷地区的SF6/N 2混合气体断路器在检修中可能出现的一些新问题进行了一些新的探讨.  相似文献   

8.
针对GIS设备内部可能残存的微粒在受到母线电压时会发生运动的问题,建立了微粒运动的数值计算模型和GIS实验模型,在SF6/N2混合气体作为绝缘介质的情况下,仿真研究了不同微粒情况下的微粒运动特性及不同微粒陷阱对金属微粒的捕获情况.仿真发现:交流电压下,金属微粒会发生频繁的上下往复运动,金属微粒的密度越大,碰撞频率和最大...  相似文献   

9.
微粒陷阱是直流气体绝缘金属封闭输电线路(gas insulated metal-enclosed transmission line,GIL)中抑制金属微粒运动的主要手段,对其结构参数进行优化可以提高微粒捕获的效果。基于此,该文首先建立微粒运动的动力学模型,分析陷阱捕获微粒的机理,得到影响陷阱捕获效果的电场特征值,进而研究陷阱参数对电场特征值的影响;最后,基于鲸鱼优化算法对微粒陷阱的参数进行优化,并通过试验验证优化方案的可行性。结果表明:陷阱底部的电场强度随着槽宽的减小、厚度和槽数的增大而降低,且当厚度与腔体内径的比值大于0.16,槽数大于15后,逐渐趋于饱和;当陷阱厚度与腔体外壁内径的比值小于0.20时,厚度增大,其前方轴向的电场值变大。此外,微粒与高压电极碰撞后受到的朝向陷阱的电场力和电场梯度力是陷阱捕获微粒的关键,且陷阱厚度越大,微粒捕获效果越好。  相似文献   

10.
为了环保,同时解决SF_6高压电器设备在低温下可靠运行的问题,研制和应用SF_6/N_2混合气体的电器设备是非常必要的。而同样压力下的SF_6所占比例越高,其密度越大,绝缘能力越强,但节能减排的意义就越小,因此需要研制SF_6/N_2混合气体密度继电器,用于监测其气体密度,从而既确保高压电器设备安全运行,又能达到较好的节能减排效果。文中提出研制高性能的SF_6/N_2混合气体密度继电器,并阐述了高性能的SF_6/N_2混合气体密度继电器的实现方法,以及通过性能测试,证实该SF_6/N_2混合气体密度继电器具有较好的性能。  相似文献   

11.
通过安托万方程和拉乌尔定律,研究了不同混合方案下SF6/N2混合气体的液化温度,结合混合气体全球变暖潜能值(GWP)研究结果,分析混合气体的理化特性.文中搭建混合气体绝缘特性试验平台,测试不同混合方案下SF6/N2混合气体的工频击穿电压和直流击穿电压,分析了混合气体中SF6含量对混合气体绝缘性能和理化性能的影响规律.研...  相似文献   

12.
In designing a gas‐insulated bus (GIB) using N2/SF6 mixtures, there are many application problems, such as the mixture pressure needed in order to maintain the required dielectric and heat transfer performance. Problems of recycling SF6 are also essential in applying N2/SF6 mixtures. This paper presents the minimum breakdown field strength at lightning impulse and the temperature rise of the conductor and enclosure as measured for N2/SF6 mixtures. Considering the dielectric and heat transfer properties, we clarify the problems of application of mixtures to a GIB and discuss the appropriate mixture ratio of SF6 in designing a GIB comparable to the present dimensions. In addition, the lowest limit of SF6 content in a liquefied recovering method is theoretically estimated for reference in practical SF6 recovery from mixtures. It is important for design to consider both breakdown phenomena, including the area effect of electrode, and the heat transfer properties of mixtures. © 2001 Scripta Technica, Electr Eng Jpn, 137(4): 25–31, 2001  相似文献   

13.
The effect of a barrier between a needle electrode and a plane one in an (N2/SF6) gas mixture on creeping flashover was investigated using a microsecond pulse voltage. The SF6 gas content was varied from 0% to 100%, and the gas pressure from 0.1 MPa to 0.3 MPa. The flashover voltage increased with increasing SF6 gas content for a positive needle electrode. For a negative needle electrode, excepting the total pressure of 0.1 MPa, at which similar flashover characteristics were obtained to the positive case, a considerable decrease in flashover voltage was found in the case of a mixture of a few percent SF6 in (N2/SF6) gas mixture at elevated total pressures. The corona behavior on the barrier in (N2/SF6) gas mixture was investigated by means of a high‐speed digital framing camera. © 2000 Scripta Technica, Electr Eng Jpn, 131(1): 1–9, 2000  相似文献   

14.
目前绝大多数气体绝缘开关设备采用SF6气体绝缘,SF6泄漏导致严重的环保问题,人们迫切希望少采用或不采用SF6气体,以降低对环境的污染。为此,试验研究SF6和SF6/N2混合气体在不同混合比、不同压力以及在不同电场结构下的击穿特性,并与SF6气体的绝缘性能进行比较,试验结果表明:在N2中注入20%~30%的SF6气体后,SF6/N2混合气体绝缘性能指标可以达到纯SF6气体的80%左右,但若继续增加SF6气体的配比,则其耐电强度上升的幅度明显变慢;此外,试验研究还发现,极不均匀电场会大大降低气体的耐击穿电压强度。试验研究证明了采用SF6/N2混合气体代替纯SF6气体的技术方案的可行性。  相似文献   

15.
建立反映气体放电过程中粒子运动特性的二维流体模型,采用有限元和通量校正传输法对该模型进行数值求解,计算了50%SF6+50%N2在均匀电场下的放电规律,模拟了流注发展过程中粒子密度的分布情况,分析放电过程中带电粒子对均匀电场的影响。搭建气体放电实验平台,测量平板电极下绝缘间隙5 mm时SF6/N2混合气体的击穿电压,将SF6/N2击穿电压的实测值与折算值进行对比,研究不同混合比、气体压强对SF6/N2协同效应的影响。结果表明:随着流注向阳极运动,放电间隙内的电子数密度不断增大;在放电初始阶段,空间电荷对电场的影响很小,随着电荷数量不断增加,空间电场产生明显畸变现象。SF6/N2混合气体击穿电压的实验测量值大于折算值,且SF6含量越高,实测值和折算值越接近。可以看出,SF6/N2的协同效应在含有少量SF6时较明显,而当SF6含量较高时,混合气体的协同效应减弱。  相似文献   

16.
通过求解两项近似Boltzmann方程,得到SF_6/N_2的放电参数,并将该参数引入流体模型。结合有限元法和通量校正传输法对SF_6/N_2的流注放电过程进行循环迭代求解,计算其击穿电压。以均匀电场中压强0.1~0.6MPa、间隙5mm为例进行数值模拟,通过气体放电实验对计算结果进行验证。根据计算及实验结果得到不同混合比、压强下SF_6/N_2的协同效应系数,分析采用上述计算方法研究混合气体协同效应的准确性。为更全面地反映混合气体应用条件,进一步开展压强低于0.1MPa的SF_6/N_2击穿特性实验研究。研究表明:随着电子崩不断向前发展,放电间隙的空间电子数密度快速增长,SF_6放电过程中的空间电子数密度增长速度低于SF_6/N_2。0.1MPa下20%SF_6/80%N_2放电5ns时的电子数密度峰值达到4.6×1014m~(-3),而SF_6中该值仅为3.7×1012m~(-3)。当气压为0.1~0.6MPa时,SF_6/N_2击穿电压计算值与实测值的最大误差为9.23%,协同效应系数计算值随压强、混合比的变化趋势与实验结果相符,误差均值为5%。0.02~0.08MPa下SF_6/N2击穿电压、协同效应系数随压强、混合比的变化趋势与0.1~0.6MPa下的基本相同。  相似文献   

17.
为了研究SF_6/N_2混合气体电介质击穿现象,利用编写的Matlab程序对放电通道发展过程进行数值模拟,并结合分形几何原理计算放电树枝的分形维数。基于分形理论,建立了考虑空间电荷分布和引入物理时间的棒-板分形放电仿真模型,通过有限元方法(FEM)计算空间电场,并首次结合通量校正传输(FCT)法求解带电粒子连续性方程,研究了不同发展概率指数、不同放电阈值和SF_6含量变化下分形放电特性。结果表明:概率指数越大,SF_6含量越高,则分形维数越小,放电树枝分叉也越少;体积含量50%/50%的SF_6/N_2混合气体放电分形维数D=1.219 2,整个放电过程流注发展平均速度为1.15Mm/s,并得到了不同时刻空间电荷及轴向电场与电子浓度的分布。  相似文献   

18.
SF6存在液化温度高和温室效应两大问题,电力行业发展急需新型环保气体。本文对cC_4F_8/N_2混合气体的绝缘性能进行了试验研究,测量了在稍不均匀电场中,不同气压强度以及混合比例条件下的工频交流击穿电压,结果表明,在实验条件范围内,击穿电压随着气压和c-C_4F_8占比的上升而上升;将实验结果与SF6比较发现c-C_4F_8/N_2混合气体具备和SF6相当的绝缘性能。此外,本文还对混合气体击穿后的气体进行了检测,发现了分解产物C_2F_4。本文为今后c-C_4F_8/N_2混合气体在电力行业中的实际应用提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号