首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measured values for the electrical resistivity of undercooled liquid Cu-Ni alloys of different compositions are presented. The experiments were performed in a facility that combines the containerless positioning method of electromagnetic levitation with the contactless inductive resistivity measurement technique. For high nickel concentrations, i.e., for the liquid Cu20Ni80 and Cu40Ni60 alloys, the electrical resistivity shows, as well as for pure nickel and pure copper, the typical linear temperature dependence in the whole range from above to below the liquidus temperature. A significant deviation from the linear behavior occurs for liquid Cu60Ni40 and, less distinct, also for liquid Cu80Ni20. This is explained by a formation of nickel associates in the melt that influence the scattering cross section of the conduction electrons.  相似文献   

2.
The natural oscillation frequency of freely suspended liquid droplets can be related to the surface tension of the material, and the decay of oscillations to the liquid viscosity. However, the fluid flow inside the droplet must be laminar to measure viscosity with existing correlations; otherwise the damping of the oscillations is dominated by turbulent dissipation. Because no experimental method has yet been developed to visualize flow in electromagnetically levitated oscillating metal droplets, mathematical modeling can assist in predicting whether or not turbulence occurs, and under what processing conditions. In this paper, three mathematical models of the flow: (1) assuming laminar conditions, (2) using the k−ɛ turbulence model, and (3) using the RNG turbulence model, respectively, are compared and contrasted to determine the physical characteristics of the flow. It is concluded that the RNG model is the best suited for describing this problem when the interior flow is turbulent. The goal of the presented work was to characterize internal flow in an oscillating droplet of liquid metal, and to verify the accuracy of the characterization by comparing calculated surface tension and viscosity values to available experimental results.  相似文献   

3.
The determination of thermophysical properties and structure of undercooled metallic melts must be accomplished by contactless methods due to the high reactivity of the material. It has been shown that electromagnetic levitation provides high-purity conditions to allow deep undercooling. The density and thermal expansion of a levitated drop can be derived from volume measurements using a charge-coupled device (CCD) camera and a digital image processing system. Combining levitation with extended x-ray absorption fine structure (EXAFS) spectroscopy leads to the possibility of studying the local structure of the liquid in a wide temperature range including the deeply undercooled regime.  相似文献   

4.
Contactless modulation calorimetry was applied to measure the specific-heat of glass forming eutectic Zr alloys in the stable and undercooled liquid under microgravity conditions during the space shuttle IML-2 mission. The experimental method is described. leading to a quantitative determination of the specific heat from measured temperature modulations. In addition, the enthalpy of Vision of the specimen and the total hemispherical emissivity can be obtained. The data on ZrNi36, permit calculation of the thermodynamic functions in the stable and undercooked melt as well as estimation of the ideal glass transition temperature.Paper presented at the Fourth International Workshop on Subsecond Thermophysics, June 27–29, 1995, Köln, Germany.  相似文献   

5.
Unique macrostructures known as spun carbon‐nanotube fibers (CNT yarns) can be manufactured from vertically aligned forests of multiwalled carbon nanotubes (MWCNTs). These yarns behave as semiconductors with room‐temperature conductivities of about 5 × 102 S cm?1. Their potential use as, for example, microelectrodes in medical implants, wires in microelectronics, or lightweight conductors in the aviation industry has hitherto been hampered by their insufficient electrical conductivity. In this Full Paper, the synthesis of metal–CNT composite yarns, which combine the unique properties of CNT yarns and nanocrystalline metals to obtain a new class of materials with enhanced electrical conductivity, is presented. The synthesis is achieved using a new technique, self‐fuelled electrodeposition (SFED), which combines a metal reducing agent and an external circuit for transfer of electrons to the CNT surface, where the deposition of metal nanoparticles takes place. In particular, the Cu–CNT and Au–CNT composite yarns prepared by this method have metal‐like electrical conductivities (2–3 × 105 S cm?1) and are mechanically robust against stringent tape tests. However, the tensile strengths of the composite yarns are 30–50% smaller than that of the unmodified CNT yarn. The SFED technique described here can also be used as a convenient means for the deposition of metal nanoparticles on solid electrode supports, such as conducting glass or carbon black, for catalytic applications.  相似文献   

6.
2D metallic transition‐metal dichalcogenides (MTMDs) have recently emerged as a new class of materials for the engineering of novel electronic phases, 2D superconductors, magnets, as well as novel electronic applications. However, the mechanical exfoliation route is predominantly used to obtain such metallic 2D flakes, but the batch production remains challenging. Herein, the van der Waals epitaxial growth of monocrystalline, 1T‐phase, few‐layer metallic VSe2 nanosheets on an atomically flat mica substrate via a “one‐step” chemical vapor deposition method is reported. The thickness of the VSe2 nanosheets is precisely tuned from several nanometers to several tenths of nanometers. More significantly, the 2D VSe2 single crystals are found to present an excellent metallic feature, as evidenced by the extra‐high electrical conductivity of up to 106 S m?1, 1–4 orders of magnitude higher than that of various conductive 2D materials. The thickness‐dependent charge‐density‐wave phase transitions are also examined through low‐temperature transport measurements, which reveal that the synthesized 2D metallic 1T‐VSe2 nanosheets should serve as good research platforms for the detecting novel many‐body states. These results open a new path for the synthesis and property investigations of nanoscale‐thickness 2D MTMDs crystals.  相似文献   

7.
The density and surface tension of Cu–Co–Fe alloys have been measured using the non-contact technique of electromagnetic levitation. At temperatures above and below the liquidus point, the density and surface tension are linear functions of temperature. The experimental density results can be predicted by means of the regular solution model from the binary phases alone, i.e., no assumption about ternary interactions needs to be made. The surface tension values are in good agreement with numerical solutions of the Butler equation if the known Gibbs excess energies are used. It is found that, for Cu–Co–Fe, it is possible to predict the surface tension from the binary systems as well. In addition to this, the surface tension is insensitive to substitution of the two transition metals, Co and Fe.  相似文献   

8.
填充型聚合物基复合材料的导电和导热性能   总被引:7,自引:0,他引:7  
研究了高密度聚乙烯为基体、炭黑和炭纤维为填料复合体系的导电和导热性能。发现当导电填料的含量达到渗流阈值时,复合材料的电导率急剧升高;而在渗流阈值附近,其热导率未出现突变。这表明电导渗流现象不完全是由导电粒子通过物理接触生成导电链所致。其导电机制是相当数量的导电粒子相互发生隧道效应。  相似文献   

9.
用电导率电池测量了钠铁磷熔体的电阻率 ,并分析了相应玻璃的穆斯堡尔谱 ,计算了铁离子的价态和氧化还原比 ,分析了温度、时间和氧化钠含量对熔体电阻率和玻璃氧化还原比的影响。发现在Na2 O含量低的熔体中 ,升温和降温过程的电阻率的变化是不可逆的 ,随着Na2 O含量增加 ,不可逆性消失 ,熔体的电阻率随时间轻微下降。同时发现Na2 O含量低的铁磷熔体的导电机理是电子性的 ,并用氧化还原比解释了其电阻率 -温度曲线的不可逆性  相似文献   

10.
11.
12.
用原位聚合法制备了聚苯胺/碳纳米管复合材料,研究了碳纳米管加入时间、搅拌速度等工艺因素对复合材料导电性能的影响。用四极电子电位差计和HT600透射电子显微镜对该复合材料的导电性能和微观形态作了检测。试验结果表明:在原位复合条件下,聚苯胺可以完全包覆在碳纳米管上,而且碳纳米管在聚苯胺基体中呈网状分布,使复合材料的导电性能得到改善。  相似文献   

13.
In this paper, the thermal conductivity of a single carbon fiber under different manufacturing conditions is measured using the steady-state short-hot-wire method. This method is based on the heat transfer phenomena of a pin fin attached to a short hot wire. The short hot wire is supplied with a constant direct current to generate a uniform heat flux, and both its ends are connected to lead wires and maintained at the initial temperature. The test fiber is attached as a pin fin to the center position of the hot wire at one end and the other end is connected to a heat sink. One-dimensional steady-state heat conduction along the hot wire and test fiber is assumed, and the basic equations are analytically solved. From the solutions, the relations among the average temperature rise of the hot wire, the heat generation rate, the temperature at the attached end of the fiber, and the heat flux from the hot wire to the fiber are accurately obtained. Based on the relations, the thermal conductivity of the single carbon fiber can be easily estimated when the average temperature rise and the heat generation rate of the hot wire are measured for the same system. Further, the electrical conductivity of the single carbon fiber is measured under the same conditions as for the thermal conductivity using a four-point contact method. The relation between the thermal conductivity and electrical conductivity is further discussed, based on the crystal microstructure.  相似文献   

14.
The possibility of using an eddy-current transducer to measure the electrical conductivity by an absolute (nonstandard) method, based on a solution of the inverse problem for the case of a coil with a current placed on the surface of a conducting nonmagnetic half-space is considered. A block diagram of the equipment, the construction of the eddy-current transducer, calibration curves and an analysis of the measurement errors are presented. The method is compared with the bridge method of measurement. __________ Translated from Izmeritel'naya Tekhnika, No. 9, pp. 59–65, September, 2005.  相似文献   

15.
The authors report a strategic approach to achieve metallic properties from semiconducting Cu Fe S colloidal nanocrystal (NC) solids through cation exchange method. An unprecedentedly high electrical conductivity is realized by the efficient generation of charge carriers onto a semiconducting Cu S NC template via minimal Fe exchange. An electrical conductivity exceeding 10 500 S cm−1 (13 400 S cm−1 at 2 K) and a sheet resistance of 17 Ω/sq at room temperature, which are among the highest values for solution-processable semiconducting NCs, are achieved successfully from bornite-phase Cu Fe S NC films possessing 10% Fe atom. The temperature dependence of the corresponding films exhibits pure metallic characteristics. Highly conducting NCs are demonstrated for a thermoelectric layer exhibiting a high power factor over 1.2 mW m−1K−2 at room temperature, electrical wires for switching on light emitting diods (LEDs), and source–drain electrodes for p- and n-type organic field-effect transistors. Ambient stability, eco-friendly composition, and solution-processability further validate their sustainable and practical applicability. The present study provides a simple but very effective method for significantly increasing charge carrier concentrations in semiconducting colloidal NCs to achieve metallic properties, which is applicable to various optoelectronic devices.  相似文献   

16.
The density and thermal conductivity of a high-purity silicon melt were measured over a wide temperature range including the undercooled regime by non-contact techniques accompanied with electromagnetic levitation (EML) under a homogeneous and static magnetic field. The maximum undercooling of 320 K for silicon was controlled by the residual impurity in the specimen, not by the melt motion or by contamination of the material. The temperature dependence of the measured density showed a linear relation for temperature as: ρ(T) = 2.51 × 103−0.271(TT m) kg · m−3 for 1367 K < T < 1767 K, where T m is the melting point of silicon. A periodic heating method with a CO2 laser was adopted for the thermal conductivity measurement of the silicon melt. The measured thermal conductivity of the melt agreed roughly with values estimated by a Wiedemann–Franz law.  相似文献   

17.
Abstract

Processing in a magnetic field leads to the texturing of materials along an easy-magnetization axis when a minimum anisotropy energy exists at the processing temperature; the magnetic field can be applied to a particle assembly embedded into a liquid, or to a solid at a high diffusion temperature close to the melting temperature or between the liquidus and the solidus temperatures in a region of partial melting. It has been shown in many experiments that texturing is easy to achieve in congruent and noncongruent compounds by applying the field above the melting temperature Tm or above the liquidus temperature of alloys. Texturing from a melt is successful when the overheating temperature is just a few degrees above Tm and fails when the processing time above Tm is too long or when the overheating temperature is too high; these observations indicate the presence of unmelted crystals above Tm with a size depending on these two variables that act as growth nuclei. A recent model that predicts the existence of unmelted crystals above the melting temperature is used to calculate their radius in a bismuth melt.  相似文献   

18.
提高高分子材料导电性能的方法,主要有掺杂、与其它材料复合、改变导电高分子的结构等方式。掺杂能够改变高分子材料中已有电子能带的能级,使得高分子中能带间的能量差减小,载流子迁移的阻力随之减小。与其它材料复合多为材料能提供载流子迁移的通道、与导电高分子材料形成大的共轭体系、改善链与链之间的有序性或增加复合物的紧密度,从而提高复合材料的导电性,与导电高分子复合的材料多为金属或金属氧化物、无机非金属纳米材料以及一些普通的有机高分子。改变导电高分子的结构能改善聚合物的规整度,提高其结晶度。导电高分子材料具有广泛的应用前景,今后需要在提高导电高分子电导率的同时改善其溶解性、加工性以及稳定性等综合性能,以实现导电高分子的实用化。  相似文献   

19.
周娩红  陈石林  杨建校  郭建光 《材料导报》2018,32(10):1592-1596
通过在中间相沥青基炭纤维表面化学镀铜以提高纤维导电性能,并以热压法制备了短切镀铜炭纤维(Cu-CF)增强ABS树脂导电复合材料。采用SEM、EDS、XRD等表征方法研究了Cu-CF的镀层厚度、Cu-CF界面结构,以及镀铜厚度和Cu-CF的含量对复合材料导电性能的影响。研究表明,化学镀铜是铜晶粒不断长大与晶体结构更加致密的过程。Cu-CF的界面粘结受镀层厚度的影响,随着镀层厚度的增加,镀层与纤维之间出现间隙。Cu-CF的电阻率随镀层厚度的增加急剧降低,当镀层厚度增大至695nm后电阻率趋于稳定。采用镀层厚度为632nm的Cu-CF为增强相,当其体积含量为20%时,Cu-CF/ABS复合材料的电阻率为5.87×10-4Ω·cm,在导电功能材料领域具有很好的应用前景。  相似文献   

20.
通过电导率测量、硬度分析和金相组织观察,研究了不同热处理工艺对Al-4.0%Cu(质量分数,下同)合金电导率的影响,分析了析出相、合金硬度和电导率之间的关系。实验结果表明,Al-4.0%Cu合金的电导率主要受基体中Cu固溶度和析出相状态的影响;双级时效处理对电导率和硬度的决定因素主要为二级时效的温度与时间,一级时效后合金的电导率和硬度会随着二级时效发生改变;退火后的Al-4.0%Cu合金于350℃保温24h后,可获得较高的电导率,此时基体中的析出相为细小、弥散的θ相。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号