首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA-filled capsids (C capsids) of herpes simplex virus type 1 were treated in vitro with guanidine-HCl (GuHCl) and analyzed for DNA loss by sucrose density gradient ultracentrifugation and electron microscopy. DNA was found to be lost quantitatively from virtually all capsids treated with GuHCl at concentrations of 0.5 M or higher, while 0.1 M GuHCl had little or no effect. DNA removal from 0.5 M GuHCl-treated capsids was effected without significant change in the capsid protein composition, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, or in its structure, as judged by electron microscopy. Electron microscopic examination of capsids in the process of emptying showed that DNA was extruded from multiple, discrete sites which appeared to coincide with capsid vertices. DNA exited the capsid in the form of thick strands or fibers that varied in diameter from approximately 4 to 13 nm with preferred diameters of 7 and 11 nm. The fibers most probably correspond to multiple, laterally aligned DNA segments, as their diameters are nearly all greater than that of a single DNA double helix. The results suggest that GuHCl treatment promotes an alteration in the capsid pentons which allows DNA to escape locally. Hexons must be more resistant to this change, since DNA loss appears to be restricted to the pentons. The ability of GuHCl to cause loss of DNA from C capsids with no accompanying change in capsid morphology or protein composition suggests that penton sites may open transiently to permit DNA exist and then return to their original state.  相似文献   

2.
Helper-dependent herpes simplex virus (HSV) vectors (amplicons) show considerable promise to provide for long-term transduced-gene expression in most cell types. The current packaging system of choice for these vectors involves cotransfection with a set of five overlapping cosmids that encode the full HSV type 1 (HSV-1) helper virus genome from which the packaging (pac) elements have been deleted. Although both the helper virus and the HSV amplicon can replicate, only the latter is packaged into infectious viral particles. Since the titers obtained are too low for practical application, an enhanced second-generation packaging system was developed by modifying both the helper virus and the HSV amplicon vector. The helper virus was reverse engineered by using the original five cosmids to generate a single HSV-bacterial artificial chromosome (BAC) clone in Escherichia coli from which the pac elements were deleted to generate a replication-proficient but packaging-defective HSV-1 genome. The HSV amplicon was modified to contain the simian virus 40 origin of replication, which acts as an HSV-independent replicon to provide for the replicative expansion of the vector. The HSV amplicon is packaged into infectious particles by cotransfection with the HSV-BAC helper virus into the 293T cell line, and the resulting cell lysate is free of detectable helper virus contamination. The combination of both modifications to the original packaging system affords an eightfold increase in the packaged-vector yield.  相似文献   

3.
The herpes simplex virus type 1 (HSV-1) capsid is a T=16 icosahedral shell that forms in the nuclei of infected cells. Capsid assembly also occurs in vitro in reaction mixtures created from insect cell extracts containing recombinant baculovirus-expressed HSV-1 capsid proteins. During capsid formation, the major capsid protein, VP5, and the scaffolding protein, pre-VP22a, condense to form structures that are extended into procapsids by addition of the triplex proteins, VP19C and VP23. We investigated whether triplex proteins bind to the major capsid-scaffold protein complexes as separate polypeptides or as preformed triplexes. Assembly products from reactions lacking one triplex protein were immunoprecipitated and examined for the presence of the other. The results showed that neither triplex protein bound unless both were present, suggesting that interaction between VP19C and VP23 is required before either protein can participate in the assembly process. Sucrose density gradient analysis was employed to determine the sedimentation coefficients of VP19C, VP23, and VP19C-VP23 complexes. The results showed that the two proteins formed a complex with a sedimentation coefficient of 7.2S, a value that is consistent with formation of a VP19C-VP23(2) heterotrimer. Furthermore, VP23 was observed to have a sedimentation coefficient of 4.9S, suggesting that this protein exists as a dimer in solution. Deletion analysis of VP19C revealed two domains that may be required for attachment of the triplex to major capsid-scaffold protein complexes; none of the deletions disrupted interaction of VP19C with VP23. We propose that preformed triplexes (VP19C-VP23(2) heterotrimers) interact with major capsid-scaffold protein complexes during assembly of the HSV-1 capsid.  相似文献   

4.
Herpes simplex virus (HSV) DNA is cleaved from concatemers and packaged into capsids in infected cell nuclei. This process requires seven viral proteins, including UL15 and UL28. UL15 expressed alone displays a nuclear localization, while UL28 remains cytoplasmic. Coexpression with UL15 enables UL28 to enter nuclei, suggesting an interaction between the two proteins. Additionally, UL28 copurified with UL15 from HSV-infected cells after ion-exchange and DNA affinity chromatography, and the complex sedimented as a 1:1 heterodimer upon sucrose gradient centrifugation. These findings are evidence of a physical interaction of UL15 and UL28 and a functional role for UL15 in directing UL28 to the nucleus.  相似文献   

5.
A nucleic acid vaccine, expressing the gene encoding herpes simplex virus (HSV) type 2 glycoprotein D (gD2) under control of the cytomegalovirus immediate-early gene promoter, was used to immunize guinea pigs against genital HSV-2 infection. The vaccine elicited humoral immune responses comparable to those seen after HSV-2 infection. Immunized animals exhibited protection from primary genital HSV-2 disease with little or no development of vesicular skin lesions and significantly reduced HSV-2 replication in the genital tract. After recovery from primary infection, immunized guinea pigs experienced significantly fewer recurrences and had significantly less HSV-2 genomic DNA detected in the sacral dorsal root ganglia compared with control animals. Thus, immunization reduced the burden of latent infection resulting from intravaginal HSV-2 challenge, and a nucleic acid vaccine expressing the HSV-2 gD2 antigen protected guinea pigs against genital herpes, limiting primary infection and reducing the magnitude of latent infection and the frequency of recurrent disease.  相似文献   

6.
Production of an infectious herpes simplex virus (HSV) particle requires sequential progression of maturing virions through a series of complex assembly events. Capsids must be constructed in the nucleus, packaged with the viral genome, and transported to the nuclear periphery. They then bud into the nuclear membrane to acquire an envelope, traffic through the cytoplasm, and are released from the cell. Most of these phenomena are very poorly defined, and no suitable model system has previously been available to facilitate molecular analyses of genomic DNA packaging, capsid envelopment, and intracellular virion trafficking. We report the development of such an assay system for HSV type 1 (HSV-1). Using a reversible temperature-sensitive mutation in capsid assembly, we have developed conditions in which an accumulated population of immature capsids can be rapidly, efficiently, and synchronously chased to maturity. By assaying synchronized scaffold cleavage, DNA packaging, and acquisition of infectivity, we have demonstrated the kinetics with which these events occur. Kinetic and morphological features of intranuclear and extranuclear virion trafficking have similarly been examined by indirect immunofluorescence microscopy and electron microscopy. This system should prove a generally useful tool for the molecular dissection of many late events in HSV-1 biogenesis.  相似文献   

7.
The herpes simplex virus type 1 (HSV-1) UL35 open reading frame (ORF) encodes a 12-kDa capsid protein designated VP26. VP26 is located on the outer surface of the capsid specifically on the tips of the hexons that constitute the capsid shell. The bioluminescent jellyfish (Aequorea victoria) green fluorescent protein (GFP) was fused in frame with the UL35 ORF to generate a VP26-GFP fusion protein. This fusion protein was fluorescent and localized to distinct regions within the nuclei of transfected cells following infection with wild-type virus. The VP26-GFP marker was introduced into the HSV-1 (KOS) genome resulting in recombinant plaques that were fluorescent. A virus, designated K26GFP, was isolated and purified and was shown to grow as well as the wild-type virus in cell culture. An analysis of the intranuclear capsids formed in K26GFP-infected cells revealed that the fusion protein was incorporated into A, B, and C capsids. Furthermore, the fusion protein incorporated into the virion particle was fluorescent as judged by fluorescence-activated cell sorter (FACS) analysis of infected cells in the absence of de novo protein synthesis. Cells infected with K26GFP exhibited a punctate nuclear fluorescence at early times in the replication cycle. At later times during infection a generalized cytoplasmic and nuclear fluorescence, including fluorescence at the cell membranes, was observed, confirming visually that the fusion protein was incorporated into intranuclear capsids and mature virions.  相似文献   

8.
9.
Gastric infection with herpes simplex virus is rare, with only two cases previously reported. At the time of the previous reports, the virus could not be cultured, and the diagnosis was based on histological findings. Two cases of culture positive herpes simplex virus gastritis are presented, emphasizing the importance of routine gastric biopsies and viral cultures in immunodeficient patients with dyspeptic symptoms.  相似文献   

10.
11.
12.
Herpes simplex virus can infect the mammalian brain causing lethal encephalitis (neurovirulence). Previously, herpes simplex virus mutants that are attenuated for neurovirulence have exhibited defects in replication in brain and/or blocks to replication in neuronal cells. We investigated the attenuation of neurovirulence of mutant PAAr5, which exhibits resistance to antiviral drugs due to altered viral DNA polymerase. Following intracerebral inoculation of 7-week-old CD1 mice, PAAr5 was 30-fold attenuated for neurovirulence compared to its wild-type parent. A drug-sensitive virus derived by marker rescue with DNA polymerase gene sequences exhibited neurovirulence that was essentially indistinguishable from that of wild-type virus, demonstrating that attenuation was due to a polymerase mutation. PAAr5 replicated in brain similarly to wild-type virus unlike another polymerase mutant, 615.8, that exhibited a similar degree of attenuation. The attenuation of PAAr5 was not associated with altered particle to PFU ratios nor with any obvious reductions in viral antigen expression in neurons, spread, histopathology, or TUNEL staining suggestive of apoptotic cells. Thus PAAr5 differs from other mutants that are attenuated for neurovirulence. Understanding how a polymerase mutation specifically attenuates neurovirulence may shed light on how herpes simplex virus can cause lethal encephalitis.  相似文献   

13.
The UL26 gene of herpes simplex virus type 1 (HSV-1) encodes a 635-amino-acid protease that cleaves itself and the HSV-1 assembly protein ICP35cd (F. Liu and B. Roizman, J. Virol. 65:5149-5156, 1991). We previously examined the HSV protease by using an Escherichia coli expression system (I. C. Deckman, M. Hagen, and P. J. McCann III, J. Virol. 66:7362-7367, 1992) and identified two autoproteolytic cleavage sites between residues 247 and 248 and residues 610 and 611 of UL26 (C. L. DiIanni, D. A. Drier, I. C. Deckman, P. J. McCann III, F. Liu, B. Roizman, R. J. Colonno, and M. G. Cordingley, J. Biol. Chem. 268:2048-2051, 1993). In this study, a series of C-terminal truncations of the UL26 open reading frame was tested for cleavage activity in E. coli. Our results delimit the catalytic domain of the protease to the N-terminal 247 amino acids of UL26 corresponding to No, the amino-terminal product of protease autoprocessing. Autoprocessing of the full-length protease was found to be unnecessary for catalysis, since elimination of either or both cleavage sites by site-directed mutagenesis fails to prevent cleavage of ICP35cd or an unaltered protease autoprocessing site. Catalytic activity of the 247-amino-acid protease domain was confirmed in vitro by using a glutathione-S-transferase fusion protein. The fusion protease was induced to high levels of expression, affinity purified, and used to cleave purified ICP35cd in vitro, indicating that no other proteins are required. By using a set of domain-specific antisera, all of the HSV-1 protease cleavage products predicted from studies in E. coli were identified in HSV-1-infected cells. At least two protease autoprocessing products, in addition to fully processed ICP35cd (ICP35ef), were associated with intermediate B capsids in the nucleus of infected cells, suggesting a key role for proteolytic maturation of the protease and ICP35cd in HSV-1 capsid assembly.  相似文献   

14.
15.
This study demonstrates that cells expressing a dysfunctional analog of a herpes simplex virus (HSV) capsid protein inhibits HSV replication. Vero cell lines expressing HSV-1 capsid protein VP19c/beta-galactosidase fusion proteins were constructed and tested for their kinetics of expression, intracellular location, and ability to interfere with HSV replication. Two chimeric genes were constructed for these studies. The larger chimeric gene encodes the amino terminal 327 amino acids (aa) of VP19c fused to the carboxy terminal 1026 aa of beta-galactosidase, and the shorter chimeric gene encodes VP19c aa 1-30 and 302-327 fused to the carboxy-terminal 1026 aa of beta-galactosidase. Cell lines V32G-1 and V32G-2 containing the larger and the shorter chimeric genes, respectively, were isolated after cotransfection with plasmid pSV2-neo DNA, cell selection, and limiting-dilution cloning. The chimeric VP19c/beta-galactosidase genes resident in V32G-1 and V32G-2 cell lines were induced by early gene products of superinfecting wild-type HSV-1 and HSV-2, but were not constitutively expressed. The hybrid proteins expressed in infected V32G-1 and V32G-2 cells both colocalized with infected cell protein 8 (ICP8) into virus-replicative compartments in the cell nuclei. HSV-1 and HSV-2 growth in V32G-1 cells (which express the larger chimeric gene) was significantly reduced compared to growth in V32G-2 and control Vero cells. The data suggest that the larger VP19c/beta-galactosidase hybrid protein interferes with virus capsid assembly or morphogenesis in a competitive manner. Results also demonstrate that a small portion of VP19c containing the predicted endoplasmic reticulum signal sequence for this capsid protein (aa 1-30) promotes incorporation of the VP19c/beta-galactosidase fusion proteins into nuclear viral replication compartments.  相似文献   

16.
Previously we reported the development of a plasmid DNA expression vector system derived from Sindbis virus (T. W. Dubensky, Jr., et al., J. Virol. 70:508-519, 1996). In vitro, such vectors exhibit high-level heterologous gene expression via self-amplifying cytoplasmic RNA replication. In the present study, we demonstrated the in vivo efficacy of the Sindbis virus-based pSIN vectors as DNA vaccines. A single intramuscular immunization of BALB/c mice with pSIN vectors expressing the glycoprotein B of herpes simplex virus type 1 induced a broad spectrum of immune responses, including virus-specific antibodies, cytotoxic T cells, and protection from lethal virus challenge in two different murine models. In addition, dosing studies demonstrated that the pSIN vectors were superior to a conventional plasmid DNA vector in the induction of all immune parameters tested. In general, 100- to 1,000-fold-lower doses of pSIN were needed to induce the same level of responsiveness as that achieved with the conventional plasmid DNA vector. In some instances, significant immune responses were induced with a single dose of pSIN as low as 10 ng/mouse. These results indicate the potential usefulness of alphavirus-based vectors for DNA immunization in general and more specifically as a herpes simplex virus vaccine.  相似文献   

17.
The caspases are cysteine proteases that have been implicated in the execution of programmed cell death in organisms ranging from nematodes to humans. Many members of the Bcl-2 family, including Bcl-XL, are potent inhibitors of programmed cell death and inhibit activation of caspases in cells. Here, we report a direct interaction between caspases and Bcl-XL. The loop domain of Bcl-XL is cleaved by caspases in vitro and in cells induced to undergo apoptotic death after Sindbis virus infection or interleukin 3 withdrawal. Mutation of the caspase cleavage site in Bcl-XL in conjunction with a mutation in the BH1 homology domain impairs the death-inhibitory activity of Bcl-XL, suggesting that interaction of Bcl-XL with caspases may be an important mechanism of inhibiting cell death. However, once Bcl-XL is cleaved, the C-terminal fragment of Bcl-XL potently induces apoptosis. Taken together, these findings indicate that the recognition/cleavage site of Bcl-XL may facilitate protection against cell death by acting at the level of caspase activation and that cleavage of Bcl-XL during the execution phase of cell death converts Bcl-XL from a protective to a lethal protein.  相似文献   

18.
Previous studies have suggested that the U(L)17 gene of herpes simplex virus type 1 (HSV-1) is essential for virus replication. In this study, viral mutants incorporating either a lacZ expression cassette in place of 1,490 bp of the 2,109-bp U(L)17 open reading frame [HSV-1(deltaU(L)17)] or a DNA oligomer containing an in-frame stop codon inserted 778 bp from the 5' end of the U(L)17 open reading frame [HSV-1(U(L)17-stop)] were plaque purified on engineered cell lines containing the U(L)17 gene. A virus derived from HSV-1(U(L)17-stop) but containing a restored U(L)17 gene was also constructed and was designated HSV-1(U(L)17-restored). The latter virus formed plaques and cleaved genomic viral DNA in a manner indistinguishable from wild-type virus. Neither HSV-1(deltaU(L)17) nor HSV-1(U(L)17-stop) formed plaques or produced infectious progeny when propagated on noncomplementing Vero cells. Furthermore, genomic end-specific restriction fragments were not detected in DNA purified from noncomplementing cells infected with HSV-1(deltaU(L)17) or HSV-1(U(L)17-stop), whereas end-specific fragments were readily detected when the viruses were propagated on complementing cells. Electron micrographs of thin sections of cells infected with HSV-1(deltaU(L)17) or HSV-1(U(L)17-stop) illustrated that empty capsids accumulated in the nuclei of Vero cells, whereas DNA-containing capsids accumulated in the nuclei of complementing cells and enveloped virions were found in the cytoplasm and extracellular space. Additionally, protein profiles of capsids purified from cells infected with HSV-1(deltaU(L)17) compared to wild-type virus show no detectable differences. These data indicate that the U(L)17 gene is essential for virus replication and is required for cleavage and packaging of viral DNA. To characterize the U(L)17 gene product, an anti-U(L)17 rabbit polyclonal antiserum was produced. The antiserum reacted strongly with a major protein of apparent Mr 77,000 and weakly with a protein of apparent Mr 72,000 in wild-type infected cell lysates and in virions. Bands of similar sizes were also detected in electrophoretically separated tegument fractions of virions and light particles and yielded tryptic peptides of masses characteristic of the predicted U(L)17 protein. We therefore conclude that the U(L)17 gene products are associated with the virion tegument and note that they are the first tegument-associated proteins shown to be required for cleavage and packaging of viral DNA.  相似文献   

19.
In cells infected by herpesviruses, a sequence of nuclear changes during interphase, as well as chromosomal aberrations during mitosis, are commonly observed. These changes suggest the progressive modification of host-cell chromatin. Previous studies have shown that the early chromatin modifications in cells infected by herpes simplex virus type 1 (HSV1) are not due to extensive breakdown of host-cell DNA or disruption of the nucleosomal structure. We have previously shown that infection by HSV1 induces single-stranded breaks in the host-cell DNA early in the course of infection, and that such breaks lead to modifications in the higher-order structure of host-cell chromatin. Here we report that virus-induced DNA breaks produce permanent long-term effects on the state of supercoiling and organization of the nuclear DNA loops, comparable to the DNA loop disorganization produced by high (and irreparable) doses of ultraviolet radiation.  相似文献   

20.
The influence of morphine on proliferation of human tumor K562 and lymphoid cells was studied and compared with that on the mitogen-induced proliferation of human peripheral blood mononuclear cells (PBMC). Morphine was shown to act as a suppressor of both cellular DNA synthesis (50% and more as compared to control) and the cellular population growth of mitogen-induced PBMC, B-lymphoma Namalva cells and EBV-transformed lymphocytes. Morphine activated proliferation of myeloid K562 and T-lymphoma Yurkat cells 1.5-fold. It is supposed that the opposite effects of morphine on proliferation of cell lines of immune origin reveal the difference in modulation of diverse immune cell types by morphine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号