首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
During mating in many butterfly species, males transfer spermatophores that contain anti-aphrodisiacs to females that repel conspecific males. For example, males of the large cabbage white, Pieris brassicae (Lepidoptera: Pieridae), transfer the anti-aphrodisiac, benzyl cyanide (BC) to females. Accessory reproductive gland (ARG) secretion of a mated female P. brassicae that is deposited with an egg clutch contains traces of BC, inducing Brussels sprouts plants (Brassica oleracea var. gemmifera) to arrest certain Trichogramma egg parasitoids. Here, we assessed whether deposition of one egg at a time by the closely related small cabbage white, Pieris rapae, induced B. oleracea var. gemmifera to arrest Trichogramma wasps, and whether this plant synomone is triggered by substances originating from male P. rapae seminal fluid. We showed that plants induced by singly laid eggs of P. rapae arrest T. brassicae wasps three days after butterfly egg deposition. Elicitor activity was present in ARG secretion of mated female butterflies, whereas the secretion of virgin females was inactive. Pieris rapae used a mixture of methyl salicylate (MeSA) and indole as an anti-aphrodisiac. We detected traces of both anti-aphrodisiacal compounds in the ARG secretion of mated female P. rapae, whereas indole was lacking in the secretion of virgin female P. rapae. When applied onto the leaf, indole induced changes in the foliar chemistry that arrested T. brassicae wasps. This study shows that compounds of male seminal fluid incur possible fitness costs for Pieris butterflies by indirectly promoting egg parasitoid attack.  相似文献   

2.
Maize, a genetically diverse crop, is the domesticated descendent of its wild ancestor, teosinte. Recently, we have shown that certain maize landraces possess a valuable indirect defense trait not present in commercial hybrids. Plants of these landraces release herbivore-induced plant volatiles (HIPVs) that attract both egg [Trichogramma bournieri Pintureau & Babault (Hymenoptera: Trichogrammatidae)] and larval [Cotesia sesamiae Cameron (Hymenoptera: Braconidae)] parasitoids in response to stemborer egg deposition. In this study, we tested whether this trait also exists in the germplasm of wild Zea species. Headspace samples were collected from plants exposed to egg deposition by Chilo partellus Swinhoe (Lepidoptera: Crambidae) moths and unexposed control plants. Four-arm olfactometer bioassays with parasitic wasps, T. bournieri and C. sesamiae, indicated that both egg and larval parasitoids preferred HIPVs from plants with eggs in four of the five teosinte species sampled. Headspace samples from oviposited plants released higher amounts of EAG-active compounds such as (E)-4,8-dimethyl-1,3,7-nonatriene. In oviposition choice bioassays, plants without eggs were significantly preferred for subsequent oviposition by moths compared to plants with prior oviposition. These results suggest that this induced indirect defence trait is not limited to landraces but occurs in wild Zea species and appears to be an ancestral trait. Hence, these species possess a valuable trait that could be introgressed into domesticated maize lines to provide indirect defense mechanisms against stemborers.  相似文献   

3.
The indirect defense mechanisms of plants comprise the production of herbivore-induced plant volatiles that can attract natural enemies of plant attackers. One of the often emitted compounds after herbivory is methyl salicylate (MeSA). Here, we studied the importance of this caterpillar-induced compound in the attraction of the parasitoid wasp Diadegma semiclausum by using a mutant Arabidopsis line. Pieris rapae infested AtBSMT1-KO mutant Arabidopsis plants, compromised in the biosynthesis of MeSA, were more attractive to parasitoids than infested wild-type plants. This suggests that the presence of MeSA has negative effects on parasitoid host-finding behavior when exposed to wild-type production of herbivore-induced Arabidopsis volatiles. Furthermore, in line with this, we recorded a positive correlation between MeSA dose and repellence of D. semiclausum when supplementing the headspace of caterpillar-infested AtBSMT1-KO plants with synthetic MeSA.  相似文献   

4.
Synthetic plant volatile lures attract natural enemies, but may have non-target effects due to the multifunctional nature of volatile signals. For example, methyl salicylate (MeSA) is used to attract predators, yet also serves as a signaling hormone involved in plant pathogen defense. We investigated the consequences of deploying MeSA lures to attract predators for tomato (Solanum lycopersicum) defense against herbivores. To understand the spatial distribution of the lure’s effect, we exposed tomatoes in the field to MeSA along a linear distance gradient and induced defenses by simulating feeding by hornworm caterpillars in a fully crossed factorial design (+/? MeSA, +/? herbivory). Subsequently, we analyzed activity of several defensive proteins (protease inhibitors, polyphenol oxidase, peroxidase), development of hornworm larvae (Manduca sexta), growth of fungal pathogens (Cladosporium and Alternaria), and attractiveness to herbivores and predators. Overall, MeSA-exposed plants were more resistant to both insects and pathogens. Secondary pathogen infection was reduced by 25% in MeSA exposed plants, possibly due to elevated polyphenol oxidase activity. Interestingly, we found that lures affected plant pathogen defenses equivalently across all distances (up to 4 m away) indicating that horizontal diffusion of a synthetic volatile may be greater than previously assumed. While thrips avoided colonizing hornworm– damaged tomato plants, this induced resistance was not observed upon pre-exposure to MeSA, suggesting that MeSA suppresses the repellant effect induced by herbivory. Thus, using MeSA lures in biological control may inadvertently protect crops from pathogens, but has mixed effects on plant resistance to insect herbivores.  相似文献   

5.
The chemical composition of plant surfaces plays a role in selection of host plants by herbivorous insects. Once the insect reaches the plant, these cues determine host acceptance. Laboratory studies have shown that the stem borer Busseola fusca (Lepidoptera: Noctuidae), an important pest of sorghum and maize in sub-Saharan Africa, is able to differentiate between host and non-host plant species. However, no information is available on the cues used by this insect to seek and accept the host plant. Thus, the role of surface phytochemical stimuli on host selection and oviposition by B. fusca was studied in the laboratory using two host plants, sorghum, Sorghum bicolor, and maize, Zea mays, and one non-host plant, Napier grass, Pennisetum purpureum. The numbers of eggs and egg masses deposited on the three plant species were compared first under no-choice and choice conditions. In both cases, more eggs and egg masses were laid on maize and sorghum than on the non-host. Artificial surrogate stems treated with a water or chloroform surface extract of each plant were then compared with surrogate stems treated with, respectively, water or chloroform as controls, under similar conditions. Surrogate stems treated with plant water extracts did not show an increase in oviposition when compared to controls, indicating that the major compounds in these extracts, i.e., simple sugars and free amino acids, are not significantly responsible for the oviposition preference. By contrast, a chloroform extract of sorghum enhanced oviposition on the surrogate stems compared to the control, while those of maize and Napier grass showed no significant effects. Analysis of the chloroform extract of sorghum showed higher amounts of α-amyrin, ß-amyrin, and n-nonacosane compared to those of maize and Napier grass. A blend of the three chemicals significantly increased oviposition compared to the chloroform-treated control, indicating that these compounds are part of the surface chemical signature of the plant responsible for host recognition and oviposition by B. fusca.  相似文献   

6.
The effects of temporal variation in the quality of short-lived annual plants on oviposition preference and larval performance of insect herbivores has thus far received little attention. This study examines the effects of plant age on female oviposition preference and offspring performance in the large cabbage white butterfly Pieris brassicae. Adult female butterflies lay variable clusters of eggs on the underside of short-lived annual species in the family Brassicaceae, including the short-lived annuals Brassica nigra and Sinapis arvensis, which are important food plants for P. brassicae in The Netherlands. Here, we compared oviposition preference and larval performance of P. brassicae on three age classes (young, mature, and pre-senescing) of B. nigra and S. arvensis plants. Oviposition preference of P. brassicae declined with plant age in both plant species. Whereas larvae performed similarly on all three age classes in B. nigra, preference and performance were weakly correlated in S. arvensis. Analysis of primary (sugars and amino acids) and secondary (glucosinolates) chemistry in the plant shoots revealed that differences in their quality and quantity were more pronounced with respect to tissue type (leaves vs. flowers) than among different developmental stages of both plant species. Butterflies of P. brassicae may prefer younger and smaller plants for oviposition anticipating that future plant growth and size is optimally synchronized with the final larval instar, which contributes >80% of larval growth before pupation.  相似文献   

7.
The majority of plant defenses against insect herbivores are coordinated by jasmonate (jasmonic acid, JA; (+)-7-iso-jasmonoyl-L-isoleucine, JA-Ile)-dependent signaling cascades. Insect feeding and mimicking herbivory by application of oral secretions (OS) from the insect induced both cytosolic Ca2+ and jasmonate-phytohormone elevation in plants. Here it is shown that in Arabidopsis thaliana upon treatment with OS from lepidopteran Spodoptera littoralis larvae, the antibiotic neomycin selectively blocked the accumulation of OS-induced Ca2+ elevation and level of the bioactive JA-Ile, in contrast to JA level. Furthermore, neomycin treatment affected the downstream expression of JA-Ile-responsive genes, VSP2 and LOX2, in Arabidopsis. The neomycin-dependent reduced JA-Ile level is partially due to increased CYP94B3 expression and subsequent JA-Ile turn-over to12-hydroxy-JA-Ile. It is neither due to the inhibition of the enzymatic conjugation process nor to substrate availability. Thus, blocking Ca2+ elevation specifically controls JA-Ile accumulation and signaling, offering an insight into role of calcium in defense against insect herbivory.  相似文献   

8.
The sandfly,Lutzomyia longipalpis (Lutz and Neiva), produces an oviposition pheromone in the accessory glands that is secreted onto the eggs during oviposition. This compound attracts and/or stimulates gravid females for egg-laying. The compound was identified as dodecanoic acid, using gas chromatography–mass spectrometry, gas chromatography, and chemical derivatizations. The synthetic analog induced the same behavioral response in gravid sandflies as the whole egg extract when present in biologically relevant quantities. When single sensillum recordings were taken from the ascoid on the antennae of female sandflies, the response to egg extract and dodecanoic acid was similar. There was a dose dependent response to dodecanoic acid and preferential sensitivity compared to other fatty acids. There was a strong additive interaction upon the behavior ofL. longipalpis when dodecanoic acid was tested in a bioassay with the known oviposition attractant apneumones from rabbit feces, hexanal, and 2-methyl-2-butanol. The results suggested that sandflies acquired hexadecanoic acid (palmitic acid) from the blood meal and over a period of four days this was converted to dodecanoic acid. The role of these token semiochemicals in sandfly oviposition is discussed with respect to additive interactions and the significance of their origin from larval food resources.  相似文献   

9.
Plants release a variety of volatile organic compounds that play multiple roles in the interactions with other plants and animals. Natural enemies of plant-feeding insects use these volatiles as cues to find their prey or host. Here, we report differences between the volatile blends of tomato plants infested with the whitefly Bemisia tabaci or the tomato borer Tuta absoluta. We compared the volatile emission of: (1) clean tomato plants; (2) tomato plants infested with T. absoluta larvae; and (3) tomato plants infested with B. tabaci adults, nymphs, and eggs. A total of 80 volatiles were recorded of which 10 occurred consistently only in the headspace of T. absoluta-infested plants. Many of the compounds detected in the headspace of the two herbivory treatments were emitted at different rates. Plants damaged by T. absoluta emitted at least 10 times higher levels of many compounds compared to plants damaged by B. tabaci and intact plants. The multivariate separation of T. absoluta-infested plants from those infested with B. tabaci was due largely to the chorismate-derived compounds as well as volatile metabolites of C18-fatty acids and branched chain amino acids that had higher emission rates from T. absoluta-infested plants, whereas the cyclic sesquiterpenes α- and β-copaene, valencene, and aristolochene were emitted at significantly higher levels from B. tabaci-infested plants. Our findings imply that feeding by T. absoluta and B. tabaci induced emission of volatile blends that differ quantitatively and qualitatively, providing a chemical basis for the recently documented behavioral discrimination by two generalist predatory mirid species, natural enemies of T. absoluta and B. tabaci employed in biological control.  相似文献   

10.
Kairomones forTrichogramma spp. were evaluated in the field on soybeans and crimson clover. Blanket (complete coverage) spraying of plots (either a synthetic tricosane or an eluate from a hexane extract of moth scales, depending on the responsiveness of theTrichogramma spp. present) resulted in increased parasitization by released and wildTrichogramma populations. The increased parasitization resulted for both natural and artificially applied eggs.  相似文献   

11.
Several components of an internal kairomone were identified inside eggs of the host,Adoxophyes sp. (Lepidoptere: Tortricidae), that releases egg deposition of the egg-larval parasitoid,Ascogaster reticulatus Watanabe (Hymenoptera: Braconidae). Pupal hemolymph with the same activity as an internal host egg kairomone was used as a convenient test sample. Heat-treated pupal hemolymph was chromatographed on a Sephadex G-25 column. Each fraction was bioassayed and reacted with ninhydrin. The active fractions were ninhydrin-positive. Each fraction was placed onto an araino acid analyzer, which showed that the amino acids were most abundant in active fractions. Among 22 amino acids, alanine, arginine, glycine, histidine, isoleucine, leucine, methionine, proline, serine, tryptophan, and valine were active. The mixture of these active amino acids was as active as the egg-mass homogenate at the same ratio and concentration, suggesting that the most important component as the kairomone in a host egg is the mixture of several amino acids.  相似文献   

12.
Insectivorous birds feed upon all developmental stages of herbivorous insects, including insect eggs if larvae and adults are unavailable. Insect egg deposition on plants can induce plant traits that are subsequently exploited by egg parasitoids searching for hosts. However, it is unknown whether avian predators can also use egg-induced plant changes for prey localization. Here, we studied whether great tits (Parus major) and blue tits (Cyanistes caeruleus) are attracted by traits of the Scots pine (Pinus sylvestris) induced by pine sawfly (Diprion pini) egg deposition. We chose this plant – insect system because sawfly egg deposition on pine needles is known to locally and systemically induce a change in pine volatile organic compounds (VOCs), and tits are known to prey upon sawfly eggs. In dual choice laboratory experiments, we simultaneously offered the birds an egg-free control branch and a systemically egg-induced branch. Significantly more birds visited the egg-induced branch first. We confirmed by GC-MS analyses that systemically egg-induced branches released more (E)-β-farnesene compared to control branches. Spectrophotometric analyses showed that control branches reflected more light than egg-induced branches throughout the avian visual range. Although a discrimination threshold model for blue tits suggests that the birds are poor at discriminating this visual difference, the role of visual stimuli in attracting the birds to egg-induced pines cannot be discounted. Our study shows, for the first time, that egg-induced odorous and/or visual plant traits can help birds to locate insect eggs without smelling or seeing those eggs.  相似文献   

13.
Herbivory byThrips tabaci affected production of the phytohormone ethylene from living onion foliage. Ethylene analysis was performed by gas chromatography on intact onion tissue. Thrips feeding damage and a crushed thrips extract stimulated significantly greater production of eihylene than could be explained by either one-time or semicontinuous mechanical damage alone, suggesting that ethylene-inducing cues may be transferred to the plant during feeding. This is the first demonstration of increased ethylene production from insect-infested intact plants. This study suggests that herbivores affect both the phytohormone physiology and secondary chemistry of living plants because ethylene has been shown to enhance production of defensive phytochemicals.  相似文献   

14.
Females of the European grapevine moth (Lobesia botrana Den. et Schiff.) usually deposit isolated eggs on flowers and berries of the grapevine (Vitis vinifera L.). We have investigated whether an epideictic pheromone could be present on the egg surface to explain this spacing behavior. About 21,000 eggs ofL. botrana were washed in cold methanol, and the biological activity was tested in a two-choice bioassay offering treated and nontreated areas. Different dilutions of the extract were tested in methanol, which was inactive alone. At the dose of four egg equivalents per microliter of extract, the number of eggs laid by theL. botrana females was reduced by as much as 57% on the treated areas compared to nontreated areas. A longer-term suppression of oviposition (at least 24 hr) following an exposure to the extract occurred for two doses (0.6 and 4.0 eggs/l) of egg extract. Our results strongly suggest the occurrence of an oviposition-deterring pheromone (ODP) on the eggs ofL. botrana. The ecological value of these results is discussed.  相似文献   

15.
The common grass yellow butterfly, Eurema mandarina (formerly Eurema hecabe mandarina) (Lepidoptera, Pieridae), recently has been separated taxonomically from a subtropical population of Eurema hecabe in Japan. This species is widely distributed in the temperate region of Japan, and feeds mainly on various ligneous plants within the Fabaceae. We attempted to identify an oviposition stimulant for E. mandarina from its primary hosts, Albizia julibrissin and Lespedeza cuneata. In both hosts, crude extract and an aqueous fraction elicited oviposition responses from gravid females. A polar subfraction of the aqueous fraction also stimulated high oviposition-stimulatory activity, comparable to the original aqueous fraction, suggesting that E. mandarina females use water-soluble compounds for host recognition. Subsequent activity-directed fractionation by ion exchange chromatography indicated that one of the key substances was contained in the neutral/amphoteric fraction. Chemical analyses revealed that the active fractions of both hosts contained d-(+)-pinitol as the major component. We examined female responses to authentic d-pinitol and found that it induced oviposition responses at concentrations greater than 0.1 %. Since this cyclitol is omnipresent in Fabaceae, we conclude that d-pinitol plays a role in mediating oviposition of E. mandarina on fabaceous plants.  相似文献   

16.
17.
Hosts of avian brood parasites often use visual cues to reject foreign eggs, and several lineages of brood parasites have evolved mimetic eggshell coloration and patterning to circumvent host recognition. What is the mechanism of parasitic egg color mimicry at the chemical level? Mimetic egg coloration by Common Cuckoos Cuculus canorus is achieved by depositing similar concentrations of colorful pigments into their shells as their hosts. The mechanism of parasitic egg color mimicry at the chemical level in other lineages of brood parasites remains unexplored. Here we report on the chemical basis of egg color mimicry in an evolutionarily independent, and poorly studied, host-parasite system: the Neotropical Striped Cuckoo Tapera naevia and one of its hosts, the Rufous-and-white Wren Thryophilus rufalbus. In most of South America, Striped Cuckoos lay white eggs that are identical to those of local host species. In Central America, however, Striped Cuckoos lay blue eggs that match those of the Rufous-and-white Wren, suggesting that blue egg color in these cuckoo populations is an adaptation to mimic host egg appearance. Here we confirm that Striped Cuckoo eggs are spectrally similar to those of their hosts and consistently contain the same major eggshell pigment, biliverdin. However, wren eggshells lacked protoporphyrin, which was present in the parasitic cuckoo eggshells. Furthermore, biliverdin concentrations were significantly lower in cuckoo eggshells than in host eggshells. Similarity of host-parasite eggshell appearance, therefore, need not always be paralleled by a quantitative chemical match to generate effective visual mimicry in birds.  相似文献   

18.
Elicitation of plant defense signaling that results in altered emission of volatile organic compounds (VOCs) offers opportunities for protecting plants against arthropod pests. In this study, we treated potato, Solanum tuberosum L., with the plant defense elicitor cis-jasmone (CJ), which induces the emission of defense VOCs and thus affects the behavior of herbivores. Using chemical analysis, electrophysiological and behavioral assays with the potato-feeding aphid Macrosiphum euphorbiae, we showed that CJ treatment substantially increased the emission of defense VOCs from potatoes compared to no treatment. Coupled GC-electroantennogram (GC-EAG) recordings from the antennae of M. euphorbiae showed robust responses to 14 compounds present in induced VOCs, suggesting their behavioral role in potato/aphid interactions. Plants treated with CJ and then challenged with M. euphorbiae were most repellent to alate M. euphorbiae. Principal component analysis (PCA) of VOC collections suggested that (E)-2-hexenal, (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT), (E)-β-farnesene, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), methyl salicylate (MeSA), CJ, and methyl benzoate (MeBA) were the main VOCs contributing to aphid behavioral responses, and that production of TMTT, (E)-β-farnesene, CJ, and DMNT correlated most strongly with aphid repellency. Our findings confirm that CJ can enhance potato defense against aphids by inducing production of VOCs involved in aphid-induced signalling.  相似文献   

19.
A giant danaid butterfly, Idea leuconoe, specializes on apocynaceous plants such as Parsonsia laevigata, which has been reported to contain pyrrolizidine alkaloids. Females of I. leuconoe deposited eggs in response to methanolic extract of P. laevigata, and subsequent bioassay-guided fractionation of the extract revealed that phytochemicals crucial for host recognition by ovipositing females are Parsonsia-specific macrocyclic pyrrolizidine alkaloids including parsonsianine, parsonsianidine, and 17-methylparsonsianidine. Parsonine, another P. laevigata pyrrolizidine component with a keto-dihydropyrrolizine moiety that is closely related in structure to male pheromones of the butterfly, and several nonhost pyrrolizidine alkaloids were entirely inactive. We interpret these data as strong evidence for an ancestral association through herbivory between danaid butterflies and pyrrolizidine alkaloids.  相似文献   

20.
The redbay ambrosia beetle Xyleborus glabratus is the vector of the symbiotic fungus, Raffaelea lauricola that causes laurel wilt, a highly lethal disease to members of the Lauraceae family. Pioneer X. glabratus beetles infect live trees with R. lauricola, and only when tree health starts declining more X. glabratus are attracted to the infected tree. Until now this sequence of events was not well understood. In this study, we investigated the temporal patterns of host volatiles and phytohormone production and vector attraction in relation to laurel wilt symptomology. Following inoculations with R. lauricola, volatile collections and behavioral tests were performed at different time points. Three days after infection (DAI), we found significant repellency of X. glabratus by leaf odors of infected swamp bay Persea palustris as compared with controls. However, at 10 and 20 DAI, X. glabratus were more attracted to leaf odors from infected than non-infected host plants. GC-MS analysis revealed an increase in methyl salicylate (MeSA) 3 DAI, whereas an increase of sesquiterpenes and leaf aldehydes was observed 10 and 20 DAI in leaf volatiles. MeSA was the only behaviorally active repellent of X. glabratus in laboratory bioassays. In contrast, X. glabratus did not prefer infected wood over healthy wood, and there was no associated significant difference in their volatile profiles. Analyses of phytohormone profiles revealed an initial increase in the amount of salicylic acid (SA) in leaf tissues following fungal infection, suggesting that the SA pathway was activated by R. lauricola infection, and this activation caused increased release of MeSA. Overall, our findings provide a better understanding of X. glabratus ecology and underline chemical interactions with its symbiotic fungus. Our work also demonstrates how the laurel wilt pathosystem alters host defenses to impact vector behavior and suggests manipulation of host odor by the fungus that attract more vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号