首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
简要介绍了光伏-太阳能热泵(PV-SAHP)的原理及构成,利用已建立的PV-SAHP系统试验平台,在冬季有、无玻璃盖板两种工况下,对PV-SAHP系统的光电转换、光热转换、热泵循环等性能进行了对比测试,并分别进行了能量效率分析和效率分析。结果表明,在冬季有玻璃盖板工况下,虽然光电效率有一定降低,但热泵循环的性能系数、光电/光热综合效率、光热效率均有明显提高。  相似文献   

2.
Experimental study of photovoltaic solar assisted heat pump system   总被引:3,自引:0,他引:3  
A novel photovoltaic solar assisted heat pump (PV-SAHP) system has been proposed in this study. Performance tests with a range of condenser supply water temperature were conducted on an experimental rig. The dynamic performance of this PV-SAHP system in a 4-day period with very similar weather conditions was analyzed and the influencing factors were identified. The results indicate that this PV-SAHP system has a superior coefficient of performance (COP) than the conventional heat pump system and at the same time, the photovoltaic efficiency is also higher. The COP of the heat pump was able to reach 10.4 and the average value was about 5.4. The average photovoltaic efficiency was around 13.4%. The highest overall coefficient of performance (COPp/t), bringing into consideration both the photovoltaic and thermal efficiency, was about 16.1.  相似文献   

3.
The performance of a photovoltaic solar assisted heat pump (PV-SAHP) with variable-frequency compressor is reported in this paper. The system is a direct integration of photovoltaic/thermal solar collectors and heat pump. The solar collectors extract the required thermal energy from the heat pump and at the same time, the cooling effect of the refrigerant lowers the working temperature of the solar cells. So this combined system has a relatively high thermal performance with an improved photovoltaic efficiency. To adapt to the continuously changing solar radiation and ambient temperature conditions, the refrigerant mass flow rate should match the heat gain at the evaporator accordingly. A variable-frequency compressor and an electricity-operated expansion valve were used in the proposed system. Mathematical models were developed to evaluate the energy performance of the combined system based on the weather conditions of Tibet. The simulation results indicated that on a typical sunny winter day with light breeze, the average COP could reach 6.01, and the average electricity efficiency, thermal efficiency and overall efficiency were 0.135, 0.479 and 0.625 respectively.  相似文献   

4.
Most buildings in Hong Kong are served with electric/gas water heaters for hot water supply. With the elevated aspiration on the quality of life, an increase in hot water demand partly contributes to the escalating energy use of the city in the past decades. A photovoltaic-integrated solar heat pump (PV-SAHP) system, which can be seen as a scientific merge of the photovoltaic/thermal and solar assistant heat pump technology, is here proposed as a sustainable alternative. Numerical analysis has been carried out making use of a dynamic simulation model and the TMY weather data of Hong Kong. It was found that the proposed system with R-134a is able to achieve a yearly-average COP of 5.93 and PV output efficiency of 12.1%; the energy output is therefore considerably higher than the conventional heat pump plus PV “side-by-side” system. Within a year, the PV-SAHP system has better performance in summer time, when the monthly average COP could reach six or higher. Hence its application potential in Hong Kong is good.  相似文献   

5.
基于动态分布参数模型的光伏太阳能热泵系统的数值模拟   总被引:1,自引:0,他引:1  
采用分布参数法,根据平衡均相流理论,建立了光伏太阳能热泵(PV-SAHP)系统的动态分布参数模型.通过数值模拟对系统在动态工况下的光电光热性能进行研究.研究结果显示PV-SAHP系统具备优越的光电光热性能,系统的COP为3.1-5.8,全天的平均值为4.8,明显高于普通的风冷热泵;系统光电转换效率为12.38%-13.31%;系统全天的平均光电功率为375W,相当于系统平均功耗(474.8W)的79%.对模拟结果进行对比分析后发现系统光电光热性能主要由太阳辐照强度所决定,并受环境温度的影响.  相似文献   

6.
太阳能电池与热泵热水器联合运行系统性能分析   总被引:1,自引:1,他引:0  
为了降低太阳能光伏电池的温度,同时提升热泵热水器的蒸发温度,利用循环水路冷却太阳能光伏电池,并将热量传递给热泵热水器的蒸发器,构成联合运行系统。针对杭州市的夏季和冬季气象条件,对该联合运行系统的性能进行了计算,分析了对应不同太阳能电池温度下的系统运行参数的变化情况,包括太阳能电池发电效率和所需换热量,热泵热水器的制热量以及热泵效率等。计算结果表明,该联合运行系统能够同时提高太阳能电池光伏转换效率和热泵效率。  相似文献   

7.
基于稳态分布参数模型的光伏蒸发器的数值模拟   总被引:1,自引:0,他引:1  
何汉峰  季杰  裴刚  刘可亮  孙炜 《太阳能学报》2007,28(11):1173-1181
该文采用分布参数法,从制冷工质动力学原理出发,根据平衡均相流理论,建立了光伏太阳能热泵光伏蒸发器的稳态分布参数模型。通过数值模拟对光伏蒸发器在给定的太阳辐照强度、环境温度以及制冷工质不同的进口流速下,工质的平均比焓、空隙率、干度、温度、压力等参数沿制冷管道的分布、蒸发器的温度和光伏电池发电效率的二维分布等进行研究。了解这些参数的分布情况对研究光伏蒸发器的光电、光热性能具有十分重要的意义,可作为蒸发器结构以及系统设计的依据,为系统的优化奠定了一定的理论基础。  相似文献   

8.
新型平板热管式PV/T热泵系统的集热模块优化研究   总被引:1,自引:0,他引:1       下载免费PDF全文
建立了新型平板热管式PV/T热泵系统的数学模型,通过实验测量得到系统在各工况下运行时的实验数据,并验证了模型的准确性和可靠性.基于验证后的数学模型,对系统的热性能、电性能和热泵系统的性能进行模拟研究.结果 表明,在冬季工况下,系统的日平均热功率、电功率和COP分别为274.5 W、93.5W和2.7.由于冬季室外环境温...  相似文献   

9.
A novel photovoltaic/thermal solar-assisted heat pump (PV/T-SAHP) system is described in this paper. A specially designed direct-expansion evaporator (PV evaporator), which is laminated with PV cells on the front surface of the thermal absorber, has been adopted in our system to acquire simultaneously thermal energy and electricity from solar radiation. A dynamic model of the PV evaporator based on the distributed parameter approach is also presented. Given the instantaneous solar irradiance and ambient temperature, the numerical model is able to output the spatial distributions of refrigerant conditions, including pressure, temperature, vapor quality and enthalpy. A two-dimensional temperature distribution of the evaporator body is also computed. Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. The results show that high electrical and thermal performance can be achieved. The PV efficiency and thermal efficiency are above 12% and 50% during the testing period.  相似文献   

10.
This paper proposes maximum photovoltaic power tracking (MPPT) for the photovoltaic (PV) array using the fractional-order incremental conductance method (FOICM). Since the PV array has low conversion efficiency, and the output power of PV array depends on the operation environments, such as various solar radiation, environment temperature, and weather conditions. Maximum charging power can be increased to a battery using a MPPT algorithm. The energy conversion of the absorbed solar light and cell temperature is directly transferred to the semiconductor, but electricity conduction has anomalous diffusion phenomena in inhomogeneous material. FOICM can provide a dynamic mathematical model to describe non-linear characteristics. The fractional-order incremental change as dynamic variable is used to adjust the PV array voltage toward the maximum power point. For a small-scale PV conversion system, the proposed method is validated by simulation with different operation environments. Compared with traditional methods, experimental results demonstrate the short tracking time and the practicality in MPPT of PV array.  相似文献   

11.
本文首先利用一个非稳态传热模型对同一环境条件下光伏光热一体化(PV/T)系统、光伏系统(PV)和太阳能热水器的能效进行分析,然后采用层次分析法(AHP)对不同品质终端能源输出的太阳能利用系统的能效统一表征,并以北京、广州和银川为代表的不同城市自然环境及用电价格为条件的三种情景,对三种太阳能利用系统的综合能源利用效率、累计净收益和投资回收期进行分析。结果表明,太阳能利用系统的经济性不仅受到系统能源利用效率和成本的影响,系统所在地的自然环境和电价水平也会引起系统经济性发生变化,因此考虑多种因素的综合评价可以为太阳能技术推广提供更客观和准确的参考。  相似文献   

12.
A novel indirect expansion solar-assisted multi-functional heat pump (IX-SAMHP) system which composes of the multi-functional heat pump system and solar thermal collecting system is proposed and studied in this paper. This system can fulfill space heating, space cooling and water heating with high energy efficiency by utilizing solar energy. For solar water heating mode and solar space heating mode, a dynamic model is presented and validated with the experimental results. The simulation results show good consistency with the experimental data, and the established model is able to predict the system performance at a reasonable accuracy (with the root mean square deviations less than 5%). On this basis, the performances of the IX-SAMHP system are investigated under different parametric conditions. For solar water heating mode, simultaneously operating the solar thermal collecting system and multi-functional heat pump system can be an energy efficiency method. With the solar irradiation rising from 0W/m2 to 800W/m2, the COP increases from 2.35 to 2.57. In solar space heating mode, the effect of the mass flow rate of water in evaporator is investigated. To balance the heating capacity and COP, the mass flow rate of water should be adjusted according to different temperature demands and heat load.  相似文献   

13.
A distributed model of an air-source heat pump (ASHP) system and its experimental setup using an immersed water condenser were presented. Dynamic performance of the ASHP was then evaluated by both simulation and experiment. The results indicated that the system coefficient of performance (COP) decreased as the condenser temperature increased, ranging from 4.41 to 2.32 with the average COP equaling 3.29 during the experiment. Comparisons between simulation results and experimental measurements demonstrated that the model was able to yield satisfactory predictions. Furthermore, temperature profiles of the refrigerant in the evaporator and condenser were also given. This paper provides the theoretical and experimental background for ASHP system optimization and a valuable reference for a solar air-source heat pump water heater when the solar irradiation energy is insufficient on cloudy or rainy days.  相似文献   

14.
将太阳能电池板、集热器、热电发电片结合起来,设计并制成了一套光伏/热电(PV/TV)系统,在利用太阳能电池发电的同时,收集热量并利用其发电。在北京地区进行了该系统的室外模拟试验,测试并讨论了该系统在不同结构和不同环境下的性能,探讨该系统在光伏建筑中的应用。试验结果表明,与单纯的光伏发电系统或太阳能热水系统相比,PV/TV系统具有占地面积小、综合效率高等优点。  相似文献   

15.
In recent years, many different techniques are applied in order to draw maximum power from photovoltaic (PV) modules for changing solar irradiance and temperature conditions. Generally, the output power generation of the PV system depends on the intermittent solar insolation, cell temperature, efficiency of the PV panel and its output voltage level. Consequently, it is essential to track the generated power of the PV system and utilize the collected solar energy optimally. The aim of this paper is to simulate and control a grid-connected PV source by using an adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm (GA) controller. The data are optimized by GA and then, these optimum values are used in network training. The simulation results indicate that the ANFIS-GA controller can meet the need of load easily with less fluctuation around the maximum power point (MPP) and can increase the convergence speed to achieve the MPP rather than the conventional method. Moreover, to control both line voltage and current, a grid side P/Q controller has been applied. A dynamic modeling, control and simulation study of the PV system is performed with the Matlab/Simulink program.  相似文献   

16.
A distributed model of an air-source heat pump (ASHP) system and its experimental setup using an immersed water condenser were presented. Dynamic performance of the ASHP was then evaluated by both simulation and experiment. The results indicated that the system coefficient of performance (COP) decreased as the condenser temperature increased, ranging from 4.41 to 2.32 with the average COP equaling 3.29 during the experiment. Comparisons between simulation results and experimental measurements demonstrated that the model was able to yield satisfactory predictions. Furthermore, temperature profiles of the refrigerant in the evaporator and condenser were also given. This paper provides the theoretical and experimental background for ASHP system optimization and a valuable reference for a solar air-source heat pump water heater when the solar irradiation energy is insufficient on cloudy or rainy days.  相似文献   

17.
《Applied Thermal Engineering》2001,21(10):1049-1065
Analytical and experimental studies were performed on a solar assisted heat pump water heating system, where unglazed, flat plate solar collectors acted as an evaporator for the refrigerant R-134a. The system was designed and fabricated locally, and operated under meteorological conditions of Singapore. The results obtained from simulation are used for the optimum design of the system and enable determination of compressor work, solar fraction and auxiliary energy required for a particular application. To ensure proper matching between the collector/evaporator load and compressor capacity, a variable speed compressor was used. Due to high ambient temperature in Singapore, evaporator can be operated at a higher temperature, without exceeding the desired design pressure limit of the compressor, resulting in an improved thermal performance of the system. Results show that, when water temperature in the condenser tank increases with time, the condensing temperature, also, increases, and the corresponding COP and collector efficiency values decline. Average values of COP ranged from about 4 to 9 and solar collector efficiency was found to vary between 40% and 75% for water temperatures in the condenser tank varying between 30°C and 50°C. A simulation model has been developed to analyse the thermal performance of the system. A series of numerical experiments have been performed to identify important variables. These results are compared with experimental values and a good agreement between predicted and experimental results has been found. Results indicate that the performance of the system is influenced significantly by collector area, speed of the compressor, and solar irradiation. An economic analysis indicates a minimum payback period of about two years for the system.  相似文献   

18.
为解决太阳电池的发电效率随温度升高而下降以及地源热泵系统供热引起的土壤热失衡问题,以典型居住建筑的光伏/光热-地源热泵(PV/T-GSHP)联合供热系统为研究对象,基于TRNSYS软件,采用土壤温度、地源热泵机组季节能效比、光伏发电效率和太阳能保证率为评价指标,对该联合供热系统进行运行性能分析。研究结果表明:夏热冬冷地区(以长沙为例)太阳能保证率相对较高,PV/T组件面积为满屋顶最大化安装(900 m2)时,第20年末土壤温度相比初始地温仅升高0.8 ℃,热泵机组季节能效比约为5.1,太阳能保证率为97.0%~98.7%;不同气候地区的太阳能保证率与PV/T组件面积和建筑全年累计供热量有关,通过定义单位建筑全年累计供热量PV/T组件面积指标,得到中国不同气候地区的太阳能保证率与该指标的耦合关系,回归方程的决定系数R2为0.983,得出在已知建筑全年累计供热量和太阳保证率设计目标值的条件下所需PV/T组件面积的计算方法。PV/T-GSHP联合供热系统的全年运行能耗显著小于平板太阳能集热器-地源热泵联合系统(最小降幅为沈阳,49.7%),远小于空气源热泵(最小降幅为石家庄,79.8%)和燃气壁挂炉(最小降幅为沈阳,65.1%)。  相似文献   

19.
The thermal performance of two different schemes of solar‐assisted heat‐pump systems has been theoretically studied. In first scheme, the evaporator of the heat pump is taken directly as the solar collecting plate and always maintained at the ambient temperature. As there is no heat loss from the collecting plate, the thermal efficiency of the collector is high and equals the solar absorptivity of the collecting plate. As suggested, the heat‐pump evaporator of the second scheme is placed in a novel fresh water solar pond/tank with high efficiency. Since the evaporator operates at a relatively high temperature, the COP of the heat pump can be increased. The calculated results show that the COP of a solar‐assisted heat pump using the second scheme is considerably higher than that of the first scheme. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
Solar assisted ground-source heat pump (SAGSHP) heating system with latent heat energy storage tank (LHEST) is investigated. The mathematical model of the system is developed, and the transient numerical simulation is carried out in terms of this model. The operation characteristic of the heating system is analyzed during the heating period in Harbin (N45.75°, E126.77°). From the results of the simulation, the average coefficient of performance (COP) of the heating system is 3.28 in heating period. In the initial and latter heating period, the COP of the heating system is higher, and the highest value is 5.95, because the system can be operated without heat pump. During the middle heating period the COP of the heating system and the operation stability of the system are improved due to solar energy and soil alternately or together as the heat source of heat pump. LHEST is a very important role in operation of the system. The system can be operated more flexibly, effectively, and stably by the charge and discharge heat of LHEST, and the effect becomes especially obvious in the initial and latter heating period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号