首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new combined power and ejector–absorption refrigeration cycle is proposed, which combines the Rankine cycle and the ejector–absorption refrigeration cycle, and could produce both power output and refrigeration output simultaneously. This combined cycle, which originates from the cycle proposed by authors previously, introduces an ejector between the rectifier and the condenser, and provides a performance improvement without greatly increasing the complexity of the system. A parametric analysis is conducted to evaluate the effects of the key thermodynamic parameters on the cycle performance. It is shown that heat source temperature, condenser temperature, evaporator temperature, turbine inlet pressure, turbine inlet temperature, and basic solution ammonia concentration have significant effects on the net power output, refrigeration output and exergy efficiency of the combined cycle. It is evident that the ejector can improve the performance of the combined cycle proposed by authors previously.  相似文献   

2.
A new combined power and refrigeration cycle is proposed, which combines the Rankine cycle and the ejector refrigeration cycle. This combined cycle produces both power output and refrigeration output simultaneously. It can be driven by the flue gas of gas turbine or engine, solar energy, geothermal energy and industrial waste heats. An exergy analysis is performed to guide the thermodynamic improvement for this cycle. And a parametric analysis is conducted to evaluate the effects of the key thermodynamic parameters on the performance of the combined cycle. In addition, a parameter optimization is achieved by means of genetic algorithm to reach the maximum exergy efficiency. The results show that the biggest exergy loss due to the irreversibility occurs in heat addition processes, and the ejector causes the next largest exergy loss. It is also shown that the turbine inlet pressure, the turbine back pressure, the condenser temperature and the evaporator temperature have significant effects on the turbine power output, refrigeration output and exergy efficiency of the combined cycle. The optimized exergy efficiency is 27.10% under the given condition.  相似文献   

3.
A multieffect refrigeration system that is based on a waste‐heat‐driven organic Rankine cycle that could produce refrigeration output of different magnitudes at different levels of temperature is presented. The proposed system is integration of combined ejector–absorption refrigeration cycle and ejector expansion Joule–Thomson (EJT) cooling cycle that can meet the requirements of air‐conditioning, refrigeration, and cryogenic cooling simultaneously at the expense of industrial waste heat. The variation of the parameters that affect the system performance such as industrial waste heat temperature, refrigerant turbine inlet pressure, and the evaporator temperature of ejector refrigeration cycle (ERC) and EJT cycles was examined, respectively. It was found that refrigeration output and thermal efficiency of the multieffect cycle decrease considerably with the increase in industrial waste heat temperature, while its exergy efficiency varies marginally. A thermal efficiency value of 22.5% and exergy efficiency value of 8.6% were obtained at an industrial waste heat temperature of 210°C, a turbine inlet pressure of 1.3 MPa, and ejector evaporator temperature of 268 K. Both refrigeration output and thermal efficiency increase with the increase in turbine inlet pressure and ERC evaporator temperature. Change in EJT cycle evaporator temperature shows a little impact on both thermal and exergy efficiency values of the multieffect cycle. Analysis of the results clearly shows that the proposed cycle has an effective potential for cooling production through exploitation of lost energy from the industry. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
A combined Rankine and ejector refrigeration cycle is proposed for the production of power and refrigeration output using duratherm 600 oil as the heat transfer fluid. Thermodynamic analysis has been done to observe the effect of parameters on the performance of the combined cycle. The effect of various parameters asthe turbine inlet pressure, evaporator temperature, condenser temperature, extraction ratio and direct normal radiation per unit area on the performance of the cycle have significant effects on the net power output, refrigeration output, first law efficiency and second law efficiency. It is also observed that the maximum irreversibility occurs in central receiver as 52.5% followed by 25% in the heliostat, 5.3% in the heat recovery vapor generator, 2.6% in the ejector, and 1.6% in the turbine and around 1.1% in the other components of the cycle. The second law efficiency of the solar operated combined Rankine and ejector refrigeration cycle is 11.90% which is much lower than its first law efficiency of 14.81%.  相似文献   

5.
Abdul Khaliq  Ibrahim Dincer 《Energy》2011,36(5):2662-2670
In this paper, exergy method is applied to analyze the gas turbine cycle cogeneration with inlet air cooling and evaporative aftercooling of the compressor discharge. The exergy destruction rate in each component of cogeneration is evaluated in detail. The effects of some main parameters on the exergy destruction and exergy efficiency of the cycle are investigated. The most significant exergy destruction rates in the cycle are in combustion chamber, heat recovery steam generator and regenerative heat exchanger. The overall pressure ratio and turbine inlet temperature have significant effect on exergy destruction in most of the components of cogeneration. The results obtained from the analysis show that inlet air cooling along with evaporative aftercooling has an obvious increase in the energy and exergy efficiency compared to the basic gas turbine cycle cogeneration. It is further shown that the first-law efficiency, power to heat ratio and exergy efficiency of the cogeneration cycle significantly vary with the change in overall pressure ratio and turbine inlet temperature but the change in process heat pressure shows small variation in these parameters.  相似文献   

6.
B. Zheng  Y.W. Weng 《Solar Energy》2010,84(5):784-1157
A combined power and ejector refrigeration cycle for low temperature heat sources is under investigation in this paper. The proposed cycle combines the organic Rankine cycle and the ejector refrigeration cycle. The ejector is driven by the exhausts from the turbine to produce power and refrigeration simultaneously. A simulation was carried out to analyze the cycle performance using R245fa as the working fluid. A thermal efficiency of 34.1%, an effective efficiency of 18.7% and an exergy efficiency of 56.8% can be obtained at a generating temperature of 395 K, a condensing temperature of 298 K and an evaporating temperature of 280 K. Simulation results show that the proposed cycle has a big potential to produce refrigeration and most exergy losses take place in the ejector.  相似文献   

7.
Combined cycle configuration has the ability to use the waste heat from the gas turbine exhaust gas using the heat recovery steam generator for the bottoming steam cycle. In the current study, a natural gas‐fired combined cycle with indirectly fired heating for additional work output is investigated for configurations with and without reheat combustor (RHC) in the gas turbine. The mass flow rate of coal for the indirect‐firing mode in circulating fluidized bed (CFB) combustor is estimated based on fixed natural gas input for the gas turbine combustion chamber (GTCC). The effects of pressure ratio, gas turbine inlet temperature, inlet temperatures to the air compressor and to the GTCC on the overall cycle performance of the combined cycle configuration are analysed. The combined cycle efficiency increases with pressure ratio up to the optimum value. Both efficiency and net work output for the combined cycle increase with gas turbine inlet temperature. The efficiency decreases with increase in the air compressor inlet temperature. The indirect firing of coal shows reduced use with increase in the turbine inlet temperature due to increase in the use of natural gas. There is little variation in the efficiency with increase in GTCC inlet temperature resulting in increased use of coal. The combined cycle having the two‐stage gas turbine with RHC has significantly higher efficiency and net work output compared with the cycle without RHC. The exergetic efficiency also increases with increase in the gas turbine inlet temperature. The exergy destruction is highest for the CFB combustor followed by the GTCC. The analyses show that the indirectly fired mode of the combined cycle offers better performance and opportunities for additional net work output by using solid fuels (coal in this case). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Supercritical CO2 power cycle shows a high potential to recover low-grade waste heat due to its better temperature glide matching between heat source and working fluid in the heat recovery vapor generator (HRVG). Parametric analysis and exergy analysis are conducted to examine the effects of thermodynamic parameters on the cycle performance and exergy destruction in each component. The thermodynamic parameters of the supercritical CO2 power cycle is optimized with exergy efficiency as an objective function by means of genetic algorithm (GA) under the given waste heat condition. An artificial neural network (ANN) with the multi-layer feed-forward network type and back-propagation training is used to achieve parametric optimization design rapidly. It is shown that the key thermodynamic parameters, such as turbine inlet pressure, turbine inlet temperature and environment temperature have significant effects on the performance of the supercritical CO2 power cycle and exergy destruction in each component. It is also shown that the optimum thermodynamic parameters of supercritical CO2 power cycle can be predicted with good accuracy using artificial neural network under variable waste heat conditions.  相似文献   

9.
This paper presents a parametric analysis of a combined power/cooling cycle, which combines the Rankine and absorption refrigeration cycles, uses ammonia–water mixture as the working fluid and produces power and refrigeration, while power is the primary goal. This cycle, also known as the Goswami Cycle, can be used as a bottoming cycle using waste heat from a conventional power cycle or as an independent cycle using low‐temperature sources such as geothermal and solar energy. Optimum operating conditions were found for a range of ammonia concentration in the basic solution, isentropic turbine efficiency and boiler pressure. It is shown that the cycle can be optimized for net work, cooling output, effective first law and exergy efficiencies. The effect of rectification cooling source (external and internal) on the cycle output was investigated, and it was found that an internal rectification cooling source always produces higher efficiencies. When ammonia vapor is superheated after the rectification process, cycle efficiencies increase but cooling output decreases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Cogeneration has improved sustainability as it can improve the energy utilization efficiency significantly. In this paper, a novel ammonia-water cycle is proposed for the cogeneration of power and refrigeration. In order to meet the different concentration requirements in the cycle heat addition process and the condensation process, a splitting /absorption unit is introduced and integrated with an ammonia–water Rankine cycle and an ammonia refrigeration cycle. This system can be driven by industrial waste heat or a gas turbine flue gas. The cycle performance was evaluated by the exergy efficiency, which is 58% for the base case system (with the turbine inlet parameters of 450 °C/11.1 MPa and the refrigeration temperature below −15 °C). It is found that there are certain split fractions which maximize the exergy efficiency for given basic working fluid concentration. Compared with the conventional separate generation system of power and refrigeration, the cogeneration system has an 18.2% reduction in energy consumption.  相似文献   

11.
A solar transcritical CO2 power cycle for hydrogen production is studied in this paper. Liquefied Natural Gas (LNG) is utilized to condense the CO2. An exergy analysis of the whole process is performed to evaluate the effects of the key parameters, including the boiler inlet temperature, the turbine inlet temperature, the turbine inlet pressure and the condensation temperature, on the system power outputs and to guide the exergy efficiency improvement. In addition, parameter optimization is conducted via Particle Swarm Optimization to maximize the exergy efficiency of hydrogen production. The exergy analysis indicates that both the solar and LNG equally provide exergy to the CO2 power system. The largest amount of exergy losses occurs in the solar collector and the condenser due to the great temperature differences during the heat transfer process. The exergy loss in condenser could be greatly reduced by increasing the LNG temperature at the inlet of the condenser. There exists an optimum turbine inlet pressure for achieving the maximum exergy efficiency. With the optimized turbine inlet pressure and other parameters, the system is able to provide 11.52 kW of cold exergy and 2.1 L/s of hydrogen. And the exergy efficiency of hydrogen production could reach 12.38%.  相似文献   

12.
A novel cooling, heat, and power (CHP) system has been proposed that features a semi-closed Brayton cycle with pressurized recuperation, integrated with a vapor absorption refrigeration system (VARS). The semi-closed Brayton cycle is called the high-pressure regenerative turbine engine (HPRTE). The VARS interacts with the HPRTE power cycle through heat exchange in the generator and the evaporator. Waste heat from the recirculated combustion gas of the HPRTE is used to power the absorption refrigeration unit, which cools the high-pressure compressor inlet of the HPRTE to below ambient conditions and also produces excess refrigeration in an amount that depends on ambient conditions. Water produced as a product of combustion is intentionally condensed in the evaporator of the VARS, which is designed to provide sufficient cooling for the inlet air to the high-pressure compressor, water extraction, and for an external cooling load. The computer model of the combined HPRTE/VARS cycle predicts that with steam blade cooling and a medium-sized engine, the cycle will have a thermal efficiency of 49% for a turbine inlet temperature of 1400°C. This thermal efficiency, is in addition to the large external cooling load, generated in the combined cycle, which is 13% of the net work output. In addition, it also produces up to 1.4 kg of water for each kg of fuel consumed, depending upon the fuel type. When the combined HPRTE/VARS cycle is optimized for maximum thermal efficiency, the optimum occurs for a broad range of operating conditions. Details of the multivariate optimization procedure and results are presented in this paper. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
《Exergy》2001,1(2):100-106
A general endoreversible refrigeration cycle model which includes the irreversibility of heat transfer across finite temperature differences and the heat leak loss between the external heat reservoirs is used to analyze the rate of exergy output of a multi-stage combined refrigeration system. The relations between the rates of exergy output and refrigeration and between the rate of exergy output and coefficient of performance are derived. The efficiency of exergy output is calculated. The optimal problems relative to the rate of exergy output are discussed. Some characteristic curves of the refrigeration system are presented. The results obtained here are suitable for an arbitrary-stage endoreversible combined refrigeration system.  相似文献   

14.
In the present paper thermodynamic analyses, i.e. both energy and exergy analyses have been conducted for a coal based combined cycle power plant, which consists of pressurized circulating fluidized bed (PCFB) partial gasification unit and an atmospheric circulating fluidized bed (ACFB) char combustion unit. Dual pressure steam cycle is considered for the bottoming cycle to reduce irreversibilities during heat transfer from gas to water/steam. The effect of operating variables such as pressure ratio, gas turbine inlet temperature on the performance of combined cycle power plant has been investigated. The pressure ratio and maximum temperature (gas turbine inlet temperature) are identified as the dominant parameters having impact on the combined cycle plant performance. The work output of the topping cycle is found to increase with pressure ratio, while for the bottoming cycle it decreases. However, for the same gas turbine inlet temperature the overall work output of the combined cycle plant increases up to a certain pressure ratio, and thereafter not much increase is observed. The entropy generation, the irreversibilities in each component of the combined cycle and the exergy destruction/losses are also estimated. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
This paper has proposed an improved liquefied natural gas (LNG) fuelled combined cycle power plant with a waste heat recovery and utilization system. The proposed combined cycle, which provides power outputs and thermal energy, consists of the gas/steam combined cycle, the subsystem utilizing the latent heat of spent steam from the steam turbine to vaporize LNG, the subsystem that recovers both the sensible heat and the latent heat of water vapour in the exhaust gas from the heat recovery steam generator (HRSG) by installing a condensing heat exchanger, and the HRSG waste heat utilization subsystem. The conventional combined cycle and the proposed combined cycle are modelled, considering mass, energy and exergy balances for every component and both energy and exergy analyses are conducted. Parametric analyses are performed for the proposed combined cycle to evaluate the effects of several factors, such as the gas turbine inlet temperature (TIT), the condenser pressure, the pinch point temperature difference of the condensing heat exchanger and the fuel gas heating temperature on the performance of the proposed combined cycle through simulation calculations. The results show that the net electrical efficiency and the exergy efficiency of the proposed combined cycle can be increased by 1.6 and 2.84% than those of the conventional combined cycle, respectively. The heat recovery per kg of flue gas is equal to 86.27 kJ s?1. One MW of electric power for operating sea water pumps can be saved. The net electrical efficiency and the heat recovery ratio increase as the condenser pressure decreases. The higher heat recovery from the HRSG exit flue gas is achieved at higher gas TIT and at lower pinch point temperature of the condensing heat exchanger. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
The study examines a novel system that combined a solid oxide fuel cell (SOFC) and an organic Rankine cycle (ORC) for cooling, heating and power production (trigeneration) through exergy analysis. The system consists of an SOFC, an ORC, a heat exchanger and a single-effect absorption chiller. The system is modeled to produce a net electricity of around 500 kW. The study reveals that there is 3-25% gain on exergy efficiency when trigeneration is used compared with the power cycle only. Also, the study shows that as the current density of the SOFC increases, the exergy efficiencies of power cycle, cooling cogeneration, heating cogeneration and trigeneration decreases. In addition, it was shown that the effect of changing the turbine inlet pressure and ORC pump inlet temperature are insignificant on the exergy efficiencies of the power cycle, cooling cogeneration, heating cogeneration and trigeneration. Also, the study reveals that the significant sources of exergy destruction are the ORC evaporator, air heat exchanger at the SOFC inlet and heating process heat exchanger.  相似文献   

17.
This paper proposes a transcritical CO2 power cycle driven by solar energy while utilizing the cold heat rejection to an liquified natural gas (LNG) evaporation system. In order to ensure a continuous and stable operation for the system, a thermal storage system is introduced to store the collected solar energy and to provide stable power output when solar radiation is insufficient. A mathematical model is developed to simulate the solar-driven transcritical CO2 power cycle under steady-state conditions, and a modified system efficiency is defined to better evaluate the cycle performance over a period of time. The thermodynamic analysis focuses on the effects of some key parameters, including the turbine inlet pressure, the turbine inlet temperature and the condensation temperature, on the system performance. Results indicate that the net power output mainly depends on the solar radiation over a day, yet the system is still capable of generating electricity long after sunset by virtue of the thermal storage tank. An optimum turbine inlet pressure exists under given conditions where the net power output and the system efficiency both reach maximum values. The net power output and the system efficiency are less sensitive to the change in the turbine inlet temperature, but the condensation temperature exerts a significant influence on the system performance. The surface area of heat exchangers increases with the rise in the turbine inlet temperature, while changes in the turbine inlet pressure have no significant impact on the heat exchanging area under the given conditions.  相似文献   

18.
Exergy analysis of a binary geothermal power plant is performed using actual plant data to assess the plant performance and pinpoint sites of primary exergy destruction. Exergy destruction throughout the plant is quantified and illustrated using an exergy diagram, and compared to the energy diagram. The sites with greater exergy destructions include brine reinjection, heat exchanger and condenser losses. Exergetic efficiencies of major plant components are determined in an attempt to assess their individual performances. The energy and exergy efficiencies of the plant are 4.5% and 21.7%, respectively, based on the energy and exergy of geothermal water at the heat exchanger inlet. The energy and exergy efficiencies are 10.2% and 33.5%, respectively, based on the heat input and exergy input to the binary Rankine cycle. The effects of turbine inlet pressure and temperature and the condenser pressure on the exergy and energy efficiencies, the net power output and the brine reinjection temperature are investigated and the trends are explained.  相似文献   

19.
In the generation of electricity and cogeneration, Kalina cycle is considered as one of the competitors to organic Rankine cycle. With the simplicity and identical components of the binary mixture, Kalina system makes it more prominent to get developed and implemented as well with its environmental friendly associate. This work proposes a new improved Kalina cycle system to convert the natural source from sun to useful work. The proposed system utilizes heat source suitable to medium temperature heat applications. The proposed cycle have 2 units of solar collector, favoring an additional heat recovery and higher performance. Solar hot source temperature and pressure are 190°C and 45 bar with additional flow to the turbine of 1.15 kg/s. Energy and second law analysis have considered in evaluating the performance of the proposed plant. The energy analysis shows minimum value of net power, energy efficiency and plant efficiency as 241 kW, 15.5% and 5.7. The exergy analysis defines that, to the proposed cycle, the exergy efficiency initializes at 77% with more exergy destruction at turbine with 31%. With the parametric analysis, the system is amended to have the maximum values of energy and exergy performances as 18.5%, 7.1% and 85%. The parametric study identifies the optimum value of the inlet temperature and pressure of the pump and turbine.  相似文献   

20.
As a renewable source, solar energy has received more and more attention in recent years. Solar energy can readily provide heat efficiently within the temperature range of 70–100°C. For the utilization of this energy source, a cascading cycle was designed and was discussed. An organic Rankine cycle (ORC) and an adsorption refrigeration cycle were combined to provide the first- and second-stage energy conversion cycle, respectively. In the analysis, R600 was used as the working fluid for the ORC and a silica gel–water working pair was analyzed for the adsorption refrigeration cycle. The energy efficiency for electrical generation and refrigeration, as well as the exergy efficiency of the cascading cycle, was assessed. For an environmental temperature of 30°C and a refrigeration temperature of 12°C, the results showed that typically 1 kW of electricity and 6.3 kW of refrigeration could be generated from approximately 15 kW heating power. The electricity generation efficiency was between 0.1 and 0.15, while the refrigeration coefficient of performance was approximately 0.8. The exergy efficiency was found to be between 0.84 and 0.89 and between 0.32 and 0.46 for the single ORC and adsorption refrigeration cycle, respectively. The overall exergy efficiency was between 0.56 and 0.74.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号