首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we propose a method about task scheduling and data assignment on heterogeneous hybrid memory multiprocessor systems for real‐time applications. In a heterogeneous hybrid memory multiprocessor system, an important problem is how to schedule real‐time application tasks to processors and assign data to hybrid memories. The hybrid memory consists of dynamic random access memory and solid state drives when considering the performance of solid state drives into the scheduling policy. To solve this problem, we propose two heuristic algorithms called improvement greedy algorithm and the data assignment according to the task scheduling algorithm, which generate a near‐optimal solution for real‐time applications in polynomial time. We evaluate the performance of our algorithms by comparing them with a greedy algorithm, which is commonly used to solve heterogeneous task scheduling problem. Based on our extensive simulation study, we observe that our algorithms exhibit excellent performance and demonstrate that considering data allocation in task scheduling is significant for saving energy. We conduct experiments on two heterogeneous multiprocessor systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Optimal online scheduling algorithms are known for sporadic task systems scheduled upon a single processor. Additionally, optimal online scheduling algorithms are also known for restricted subclasses of sporadic task systems upon an identical multiprocessor platform. The research reported in this article addresses the question of existence of optimal online multiprocessor scheduling algorithms for general sporadic task systems. Our main result is a proof of the impossibility of optimal online scheduling for sporadic task systems upon a system comprised of two or more processors. The result is shown by finding a sporadic task system that is feasible on a multiprocessor platform that cannot be correctly scheduled by any possible online, deterministic scheduling algorithm. Since the sporadic task model is a subclass of many more general real-time task models, the nonexistence of optimal scheduling algorithms for the sporadic task systems implies nonexistence for any model which generalizes the sporadic task model.  相似文献   

3.
Energy efficient scheduling of parallel tasks on multiprocessor computers   总被引:2,自引:1,他引:1  
In this paper, scheduling parallel tasks on multiprocessor computers with dynamically variable voltage and speed are addressed as combinatorial optimization problems. Two problems are defined, namely, minimizing schedule length with energy consumption constraint and minimizing energy consumption with schedule length constraint. The first problem has applications in general multiprocessor and multicore processor computing systems where energy consumption is an important concern and in mobile computers where energy conservation is a main concern. The second problem has applications in real-time multiprocessing systems and environments where timing constraint is a major requirement. Our scheduling problems are defined such that the energy-delay product is optimized by fixing one factor and minimizing the other. It is noticed that power-aware scheduling of parallel tasks has rarely been discussed before. Our investigation in this paper makes some initial attempt to energy-efficient scheduling of parallel tasks on multiprocessor computers with dynamic voltage and speed. Our scheduling problems contain three nontrivial subproblems, namely, system partitioning, task scheduling, and power supplying. Each subproblem should be solved efficiently, so that heuristic algorithms with overall good performance can be developed. The above decomposition of our optimization problems into three subproblems makes design and analysis of heuristic algorithms tractable. A unique feature of our work is to compare the performance of our algorithms with optimal solutions analytically and validate our results experimentally, not to compare the performance of heuristic algorithms among themselves only experimentally. The harmonic system partitioning and processor allocation scheme is used, which divides a multiprocessor computer into clusters of equal sizes and schedules tasks of similar sizes together to increase processor utilization. A three-level energy/time/power allocation scheme is adopted for a given schedule, such that the schedule length is minimized by consuming given amount of energy or the energy consumed is minimized without missing a given deadline. The performance of our heuristic algorithms is analyzed, and accurate performance bounds are derived. Simulation data which validate our analytical results are also presented. It is found that our analytical results provide very accurate estimation of the expected normalized schedule length and the expected normalized energy consumption and that our heuristic algorithms are able to produce solutions very close to optimum.  相似文献   

4.
陆小双  帅建梅 《计算机系统应用》2013,22(12):117-121,163
本文提出一种新型线性复杂度多处理机实时任务启发式调度算法,利用并行技术为动态实时系统提供较优解.使用大量存在可行调度的任务集合测试多处理机实时任务调度算法的性能,分析了几种主要参数对调度成功率的影响.实验表明新调度算法调度成功率较高,适用于不完全知晓任务参数的动态多处理机实时系统.  相似文献   

5.
本文对具有高通讯延迟的多处理机系统(机群系统)上的任务调度算法进行了研究,与以往算法主要考虑任务图的关键路径不同,本文给出了任务图的调度与其偶图匹配的对应关系,并由此提出了一种新的启发式算法,通过模拟试验显示本算法具有较好的调度效果。  相似文献   

6.
当前处理器由于较高的能量消耗,导致处理器热量散发的提高及系统可靠性的降低,已经成为目前计算机领域较为关心的问题.然而目前一些有效降低能量消耗的技术大多针对单处理器系统,较少考虑多处理器系统.提出的调度算法针对多处理器计算环境,以执行时间最快的任务优先调度为基础,结合其它有效技术(共享空闲时间回收),使得实时任务在其截止期内完成的同时能够有效地减低整个系统的能量消耗.针对独立任务集及具有依赖关系的任务集,提出两种针对同构计算环境的算法:STFBA1(Shortest—Task—First—Based Algorithm)及STFBA2,及两钟针对多任务集的算法HSA1(Hybrid Seheduling Algorithm)及HAS2.在单任务集计算环境下,与目前所知的有效算法相比,算法具有更好的性能(调度长度及能量消耗).在多任务集计算环境下,基于混合调度策略的算法能够明显改进调度性能.  相似文献   

7.
实时多处理器系统的动态调度算法一直是实时系统中的重要研究课题.根据异构实时多处理器的特点,提出了一种新的异构实时动态调度算法P_IEFT.该算法采用了一个新的处理器分配策略——将任务分配到能最早完成任务的处理器上.该策略能够缩短调度长度,提高后继任务被接受的可能性,从而能够提高成功调度率.模拟结果表明,该调度算法的成功调度率高于近视算法和节约算法的成功调度率.  相似文献   

8.
多处理器调度算法实现及其Petri网建模与仿真   总被引:1,自引:0,他引:1  
多处理器调度算法在嵌入式实时系统领域中起着关键的作用。根据多处理器的特点,提出一种实时多处理器动态分割并行调度算法SPara。该算法解决了此前多处理器算法,如Myopic、EDPF等仅依据截止期对任务调度产生的问题,实现了增加任务紧迫度限制的调度策略,以及针对执行时间长、截止期紧迫任务的有效调度方法。同时算法结合高级颜色时间Petri网理论进行建模并仿真。测试结果表明,SPara算法在处理器利用率以及调度成功率方面较Myopic等算法有较大提高。  相似文献   

9.
PASM is a proposed large-scale distributed/parallel processing system which can be partitioned into independent SIMD/MIMD machines of various sizes. One design problem for systems such as PASM is task scheduling. The use of multiple FIFO queues for nonpreemptive task scheduling is described. Four multiple-queue scheduling algorithms with different placement policies are presented and applied to the PASM parallel processing system. Simulation of a queueing network model is used to compare the performance of the algorithms. Their performance is also considered in the case where there are faulty control units and processors. The multiple-queue scheduling algorithms can be adapted for inclusion in other multiple-SIMD and partitionable SIMD/MIMD systems that use similar types of interconnection networks to those being considered for PASM.  相似文献   

10.
Workflow scheduling on parallel systems has long been known to be a NP-complete problem. As modern grid and cloud computing platforms emerge, it becomes indispensable to schedule mixed-parallel workflows in an online manner in a speed-heterogeneous multi-cluster environment. However, most existing scheduling algorithms were not developed for online mixed-parallel workflows of rigid data-parallel tasks and multi-cluster environments, therefore they cannot handle the problem efficiently. In this paper, we propose a scheduling framework, named Mixed-Parallel Online Workflow Scheduling (MOWS), which divides the entire scheduling process into four phases: task prioritizing, waiting queue scheduling, task rearrangement, and task allocation. Based on this framework, we developed four new methods: shortest-workflow-first, priority-based backfilling, preemptive task execution and All-EFT task allocation, for scheduling online mixed-parallel workflows of rigid tasks in speed-heterogeneous multi-cluster environments. To evaluate the proposed scheduling methods, we conducted a series of simulation studies and made comparisons with previously proposed approaches in the literature. The experimental results indicate that each of the four proposed methods outperforms existing approaches significantly and all these approaches in MOWS together can achieve more than 20% performance improvement in terms of average turnaround time.  相似文献   

11.
Utilization Bounds for EDF Scheduling on Real-Time Multiprocessor Systems   总被引:1,自引:3,他引:1  
The utilization bound for earliest deadline first (EDF) scheduling is extended from uniprocessors to homogeneous multiprocessor systems with partitioning strategies. First results are provided for a basic task model, which includes periodic and independent tasks with deadlines equal to periods. Since the multiprocessor utilization bounds depend on the allocation algorithm, different allocation algorithms have been considered, ranging from simple heuristics to optimal allocation algorithms. As multiprocessor utilization bounds for EDF scheduling depend strongly on task sizes, all these bounds have been obtained as a function of a parameter which takes task sizes into account. Theoretically, the utilization bounds for multiprocessor EDF scheduling can be considered a partial solution to the bin-packing problem, which is known to be NP-complete. The basic task model is extended to include resource sharing, release jitter, deadlines less than periods, aperiodic tasks, non-preemptive sections, context switches, and mode changes.  相似文献   

12.
The purpose of this paper is to examine the impact of scheduling parallel tasks onto non-uniform memory access (NUMA) shared-memory multiprocessor systems by considering non-negligible intertask communications and communication contentions. Communication contentions arise from the communication medium having insufficient capacity to serve all transmissions, thereby causing significant contention delays. Therefore, a new scheduling algorithm, herein referred to as the Extended Critical Path (ECP) algorithm is proposed. The proposed algorithm schedules parallel tasks by considering non-negligible intertask communications and the contentions among shared communication resources. Moreover, it ensures performance within a factor of two of the optimum for general directed acyclic task graphs (DATGs). Experimental results demonstrate the superiority of the ECP algorithm over the scheduling algorithms presented in previous literature.  相似文献   

13.
本文主要基于现代启发式差分算法讨论多处理机调度,多处理机调度是NP组合优化问题,目前多采用启发算法。差分进化算法是最近提出的进化算法,主要根据父代个体之间矢量差构造下一代,是一种全局优化搜索方式。本文考虑采用差分进化矢量优先级模型描述调度顺序进行调度,与模拟退火算法比较得到较好调度结果。  相似文献   

14.
Parallel processing is one approach to achieving the large computational processing capabilities required by many real-time computing tasks. One of the problems that must be addressed in the use of reconfigurable multiprocessor systems is matching the architecture configuration to the algorithms to be executed. This paper presents a conceptual model that explores the potential of artificial intelligence tools, specifically expert systems, to design an Intelligent Operating System for multiprocessor systems. The target task is the implementation of image understanding systems on multiprocessor architectures. PASM is used as an example multiprocessor. The Intelligent Operating System concepts developed here could also be used to address other problems requiring real-time processing. An example image understanding task is presented to illustrate the concept of intelligent scheduling by the Intelligent Operating System. Also considered is the use of the conceptual model when developing an image understanding system in order to test different strategies for choosing algorithms, imposing execution order constraints, and integrating results from various algorithms.  相似文献   

15.
科学与工程计算中的很多复杂应用问题需要使用科学工作流技术,超算领域中的科学工作流常以并行任务图建模,并行任务图的有效调度对应用的高效执行有重要意义。给出了资源限制条件下并行任务图的调度模型;针对Fork-Join类并行任务图给出了若干最优化调度结论;针对一般并行任务图提出了一种新的调度算法,该算法考虑了数据通信开销对资源分配和调度性能的影响,并对已有的CPA算法在特定情况下进行了改进。通过实验与常用的CPR和CPA算法做比较,验证了提出的新算法能够获得很好的调度效果。本文提出的调度算法和得到的最优调度结论对工作流应用系统的高性能调度功能开发具有借鉴意义。  相似文献   

16.
The multiprocessor scheduling problem is the problem of scheduling the tasks of a precedence constrained task graph (representing a parallel program) onto the processors of a multiprocessor in a way that minimizes the completion time. Since this problem is known to be NP-hard in the strong sense in all but a few very restricted eases, heuristic algorithms are being developed which obtain near optimal schedules in a reasonable amount of computation time. We present an efficient heuristic algorithm for scheduling precedence constrained task graphs with nonnegligible intertask communication onto multiprocessors taking contention in the communication channels into consideration. Our algorithm for obtaining satisfactory suboptimal schedules is based on the classical list scheduling strategy. It simultaneously exploits the schedule-holes generated in the processors and in the communication channels during the scheduling process in order to produce better schedules. We demonstrate the effectiveness of our algorithm by comparing with two competing heuristic algorithms available in the literature  相似文献   

17.
A genetic algorithm for multiprocessor scheduling   总被引:6,自引:0,他引:6  
The problem of multiprocessor scheduling can be stated as finding a schedule for a general task graph to be executed on a multiprocessor system so that the schedule length can be minimized. This scheduling problem is known to be NP-hard, and methods based on heuristic search have been proposed to obtain optimal and suboptimal solutions. Genetic algorithms have recently received much attention as a class of robust stochastic search algorithms for various optimization problems. In this paper, an efficient method based on genetic algorithms is developed to solve the multiprocessor scheduling problem. The representation of the search node is based on the order of the tasks being executed in each individual processor. The genetic operator proposed is based on the precedence relations between the tasks in the task graph. Simulation results comparing the proposed genetic algorithm, the list scheduling algorithm, and the optimal schedule using random task graphs, and a robot inverse dynamics computational task graph are presented  相似文献   

18.
提出基于粒子群优化的多处理机调度算法,采用列表调度,同时把粒子群的矢量表达方式转换为基于调度优先级的模型。调度结果显示能提高全局搜索能力,加快进化速度,优于模拟退火等启发式算法结果。  相似文献   

19.
Optimized task scheduling is one of the most important challenges to achieve high performance in multiprocessor environments such as parallel and distributed systems. Most introduced task-scheduling algorithms are based on the so-called list scheduling technique. The basic idea behind list scheduling is to prepare a sequence of nodes in the form of a list for scheduling by assigning them some priority measurements, and then repeatedly removing the node with the highest priority from the list and allocating it to the processor providing the earliest start time (EST). Therefore, it can be inferred that the makespans obtained are dominated by two major factors: (1) which order of tasks should be selected (sequence subproblem); (2) how the selected order should be assigned to the processors (assignment subproblem). A number of good approaches for overcoming the task sequence dilemma have been proposed in the literature, while the task assignment problem has not been studied much. The results of this study prove that assigning tasks to the processors using the traditional EST method is not optimum; in addition, a novel approach based on the ant colony optimization algorithm is introduced, which can find far better solutions.  相似文献   

20.
容错多处理机中一种高效的实时调度算法   总被引:5,自引:0,他引:5  
针对基于主副版本容错的多处理机中独立的、抢占性的硬实时任务,提出了一种高效的调度算法——TPFTRM(task partition based fault tolerant rate-monotonic)算法.该算法将单机实时RM 算法扩展到容错多处理机上,并且调度过程中从不使用主动执行的任务副版本,而仅使用被动执行和主副重叠方式执行的任务副版本,从而最大限度地利用副版本重叠和分离技术提高了算法调度性能.此外,TPFTRM 根据任务负载不同将任务集合划分成两个不相交的子集进行分配;还根据处理机调度的任务版本不同,将处理机集合划分成3 个不相交的子集进行调度,从而使TPFTRM 调度算法便于理解、实现以及减少了调度所需要的运行时间.模拟实验对各种具有不同周期和任务负载的任务集合进行了调度测试.实验结果表明,TPFTRM与目前所知同类算法相比,在调度相同参数的任务集合时不仅明显减少了调度所需要的处理机数目,还减少了调度所需要的运行时间,从而证实了TPFTRM 算法的高效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号