共查询到16条相似文献,搜索用时 56 毫秒
1.
针对传统模糊C-均值聚类算法(FCM算法)初始聚类中心选择的随机性和距离向量公式应用的局限性,提出一种基于密度和马氏距离优化的模糊C-均值聚类算法(Fuzzy C-Means Based on Mahalanobis and Density,FCMBMD算法)。该算法通过计算样本点的密度来确定初始聚类中心,避免了初始聚类中心随机选取而产生的聚类结果的不稳定;采用马氏距离计算样本集的相似度,以满足不同度量单位数据的要求。实验结果表明,FCMBMD算法在聚类中心、收敛速度、迭代次数以及准确率等方面具有良好的效果。 相似文献
2.
一种遗传模糊聚类算法及其应用 总被引:1,自引:1,他引:1
研究一种基于遗传算法的模糊聚类方法,即将遗传算法得到的聚类中心作为模糊C-均值(FCM)聚类算法初值,这样既可以克服FCM算法对初始中心敏感的缺点,也可以解决遗传算法只能找到近似解的问题。将算法用于通信信号的星座聚类,根据聚类有效性函数自适应地确定聚类中心,并完成信号类型的识别。仿真实验证明,当存在较小的定时误差时,算法对PSK和QAM信号仍然是有效的。 相似文献
3.
基于遗传算法和遗传模糊聚类的混合聚类算法 总被引:2,自引:1,他引:2
为了动态确定聚类数目C和该数目下的最优分类,构造出遗传算法和模糊遗传C均值聚类的混合聚类算法(HGA-FGCM),该方法构造了一个既考虑类与类之间的分散程度,又考虑同一类紧凑程度的目标评价函数;运用遗传算法的全局寻优能力,求得最佳聚类数下的最优聚类。 相似文献
4.
针对模糊C-均值(FCM)算法在解决各数据样本对聚类中心具有同样影响权重问题的不足以及对噪声和孤立点数据敏感,提出了改进和提高的方法:利用相似关系理论,为每一个样本加一个特征权值,构造加权目标函数,让不同的样本在聚类中起不同的作用,并对欧式距离进行加权,减少少数异常点对确定聚类中心的影响;同时对隶属度函数进行改进,以消除孤立点对聚类结果的影响。实验结果表明改进后的算法比经典FCM具有更好的鲁棒性和聚类效果。 相似文献
5.
为了提高控制系统中传感器与执行器故障诊断的准确性,结合小波分析特征提取的优势和密度函数加权模糊C-均值聚类具有较好分类效果的特点,提出了一种新的控制系统故障诊断方法。该方法首先利用小波分析对故障信号进行特征提取,降低噪声的影响;然后对特征提取后的数据通过加权模糊C-均值聚类算法,对故障进行识别分类。实验表明,基于小波分析和加权模糊C-均值聚类相结合的方法,不仅可以识别不同部件的故障,而且可以对同一部件的不同类型的故障进行诊断。 相似文献
6.
曾振东 《计算机工程与应用》2012,48(13):22-26
在综合分析标准的模糊C-均值聚类算法和条件模糊C-均值聚类算法基础上,对模糊划分空间进行修改,进一步弱化模糊划分矩阵的约束,给出一种扩展的条件模糊C-均值聚类算法。算法的划分矩阵和原型不依赖于背景约束及模糊划分矩阵的隶属度总和。实验结果表明:该算法可以得到不同的聚类原型,并具有很好的聚类效果。 相似文献
7.
针对模糊C-均值聚类对初始值敏感、容易陷入局部最优的缺陷,提出了一种基于萤火虫算法的模糊聚类方法。该方法结合萤火虫算法良好的全局寻优能力和模糊C-均值算法的较强的局部搜索特性,用萤火虫算法优化搜索FCM的聚类中心,利用FCM进行聚类,有效地克服了模糊C-均值聚类的不足,同时增强了萤火虫算法的局部搜索能力。实验结果表明,该算法具有很好的全局寻优能力和较快的收敛速度,能有效地收敛于全局最优解,具有较好的聚类效果。 相似文献
8.
一种协同的可能性模糊聚类算法 总被引:1,自引:0,他引:1
模糊C-均值聚类(FCM)对噪声数据敏感和可能性C-均值聚类(PCM)对初始中心非常敏感易导致一致性聚类。协同聚类算法利用不同特征子集之间的协同关系并与其他算法相结合,可提高原有的聚类性能。对此,在可能性C-均值聚类算法(PCM)基础上将其与协同聚类算法相结合,提出一种协同的可能性C-均值模糊聚类算法(C-FCM)。该算法在改进的PCM的基础上,提高了对数据集的聚类效果。在对数据集Wine和Iris进行测试的结果表明,该方法优于PCM算法,说明该算法的有效性。 相似文献
9.
为解决模糊C-均值(FCM)聚类算法对噪声和孤立点数据敏感、样本分布不均衡的问题,提出了具体的改进和提高的方法:改进隶属度函数,以消除孤立点对聚类结果的影响;为每个样本点赋予一个定量的权值,以区分不同的样本点对于知识发现的不同作用,改善噪音和分布不均衡的样本集的聚类结果。实验结果表明该算法具有更好的健壮性和聚类效果。 相似文献
10.
11.
12.
为了克服模糊C-均值(FCM)聚类算法易陷入局部极小值和对初始值敏感的缺点,提出了一种基于改进量子蚁群的模糊聚类算法。将量子计算原理和蚁群算法相结合来改进FCM算法。初期采用量子遗传算法生成信息素分布,后期利用蚁群算法的全局搜索性、并行计算性等特点避免聚类陷入局部最优解。实验证明该算法保证了种群的多样性,有较好的全局收敛性,克服了模糊C-均值聚类算法的不足,能有效解决未成熟收敛的问题,使聚类问题最终快速、有效地收敛到全局最优解。 相似文献
13.
针对聚类算法需要处理数据集的规模越来越大、时效性要求越来越高,对算法的大数据适应能力和性能要求更高的问题,提出一种在Spark分布式内存计算平台下的模糊C均值(FCM)算法Spark-FCM。首先对矩阵通过水平分割实现分布式存储,不同向量存储在不同节点;然后基于FCM算法的计算特点,设计了分布式和缓存敏感的常用矩阵操作,包括乘法、转置和加法等;最后基于矩阵操作和Spark平台特点,设计了Spark-FCM算法,主要数据结构采用分布式矩阵存储,具有节点间数据移动少和每个步骤分布式计算特点。通过在单机和集群环境下测试,算法具有良好的可扩展性,并可以适应大规模数据集,算法性能与数据量成线性关系,集群环境下性能比单机提高2~3倍。 相似文献
14.
针对FCM算法的缺点,提出了一种基于改进的FCM的增量式聚类方法。该算法首先对模糊C均值算法进行加权,并将权系数归一化,然后将改进的算法与增量式聚类算法结合。改进的方法既提高了FCM算法的性能,避免了FCM算法的缺陷,并能够实现增量式聚类,避免了大量的重复计算,并且不受孤立点的影响。实验表明该算法的有效性。 相似文献
15.
对于时间序列的基因表达数据,传统的聚类算法都是以距离为相似性度量标准,没有考虑基因随时间变化的相似趋势。从基因变化的趋势出发,构造了一种新的模糊相似关系矩阵,提出了改进的基于模糊相似关系的聚类算法,并以该算法计算FCM的初始聚类中心。将该方法应用在酵母菌基因表达数据中,实验结果表明该算法不仅克服了FCM算法易陷入局部极小值、对初值敏感的缺点,而且能够发现一些表达模式变化趋势相似的共调控基因。 相似文献
16.
模糊聚类,特别是模糊C均值聚类算法(FCM)广泛地运用到图像的分割中。但是传统的算法未对数据对特征进行优化,亦未考虑图像的空间信息,对噪声图像分割不理想。在FCM目标函数中引入核函数,用内核引导距离代替传统的欧式距离,同时考虑到邻近象素的影响,增加了空间约束项,提出了利用空间信息的核FCM算法。通过对模拟图和仿真脑部MR图像的分割实验证明,该算法可以有效的分割含有噪声图像。 相似文献