共查询到15条相似文献,搜索用时 46 毫秒
1.
传统核主元分析法(KPCA)是一种广泛应用的非线性化工过程故障检测方法,但是其未充分利用过程数据的概率分布信息,往往难以有效检测过程中的微小故障。针对传统KPCA方法的局限性,本文提出了一种基于加权概率相关核主元分析(WPRKPCA)的非线性化工过程微小故障检测方法。与传统KPCA方法监控核成分的变化不同,该方法利用Kullback Leibler散度(KLD)度量核成分的概率分布变化,进而建立基于KLD成分的统计监控模型,以充分挖掘过程数据所包含的概率信息。进一步考虑到不同KLD成分承载故障信息的差异性,该方法设计了一种基于核密度估计的指数加权策略,根据KLD成分描述故障信息程度的差异分配相应的权值,以加强监控模型对微小故障检测的灵敏性。在一个数值例子和连续搅拌反应器(CSTR)系统上的仿真结果表明,本文所提方法具有比传统KPCA方法更好的微小故障检测性能。 相似文献
2.
针对传统核主元分析(KPCA)方法难以有效检测微小故障的问题,提出一种基于双层局部核主元分析(double-level local kernel principal component analysis,DLKPCA)的非线性过程微小故障检测方法。该方法从变量和样本两个角度来挖掘数据内部的局部信息,以提高故障检测能力。首先,利用变量分块思想,基于不同变量与核主元之间互信息相关度的相似性,将所有过程变量划分多个局部变量块。然后,构建基于得分向量和特征值的残差函数以挖掘样本局部信息。最后利用贝叶斯融合策略对各块的结果进行融合。在田纳西-伊斯曼基准过程的仿真结果表明,在微小故障检测方面,本文所提方法具有比传统KPCA方法更好的故障检测性能。 相似文献
3.
4.
基于贝叶斯推理的PKPCAM的非线性多模态过程故障检测与诊断方法 总被引:1,自引:1,他引:0
针对一类非线性多模态的化工过程,提出一种基于概率核主元的混合模型(PKPCAM),并利用贝叶斯推理策略进行过程监控与故障诊断.在提出的模型中, 每个操作模态由一个局部化的概率核主元分量描述,从而构建的一系列分量对应了不同的操作模态.首先,将过程数据从原始的度量空间投影到高维特征空间;其次,在该特征空间建立概率主元混合模型,从概率角度刻画数据集的多个局部分量特征;最后,在提取的核主元分量内获得测试样本的后验概率,结合模态内的马氏距离贡献度,提出基于贝叶斯推理的全局概率指标进行故障检测,同时利用模态内变量的相对贡献度,基于全局贡献度指标进行故障诊断.利用TEP仿真平台,与基于k均值聚类的次级主元分析和核主元分析的方法进行了对比分析,验证了提出的贝叶斯推理的PKPCAM方法对非线性多模态过程进行故障检测与诊断的可行性和有效性. 相似文献
5.
核独立元分析(kernel independent component analysis,KICA)故障检测方法的故障检测时间易受独立元顺序和主导独立元数目经验选取的影响,针对这个问题,提出基于KICA和高斯混合模型(Gaussian mixture model,GMM)的故障检测方法。采用KICA从正常工况测量数据中提取独立元,用GMM拟合各独立元的概率密度函数,建立基于GMM的监控量及其控制限;计算各独立元的监控量均值,以此判断其非高斯性强弱,对每个强非高斯独立元进行单独监控,对弱非高斯部分采用主元分析法进行监控。在Tennessee Eastman过程上的仿真结果说明,相比于KICA故障检测方法,所提方法不需要排序独立元和选取主导独立元数目,避免了其对故障检测时间的影响,能够有效利用过程信息,缩短故障检测的延迟时间。 相似文献
6.
针对工业过程的多模态和非高斯特性,提出一种基于改进局部熵主元分析(ILEPCA)的故障检测方法。引入k近邻的均值对局部概率密度函数进行改进,构造改进的局部熵数据剔除多模态和非高斯特性。对改进的局部熵数据建立主元分析(PCA)模型,根据核密度估计计算控制限。对于测试数据,运用改进的局部熵算法预处理后,向PCA模型上投影,计算统计量。通过比较统计量与控制限来进行故障检测。把该方法应用到数值例子和半导体过程故障检测,仿真结果表明,与PCA、核主元分析(KPCA)和局部熵PCA (LEPCA)相比,ILEPCA算法在具有多模态和非高斯特性的工业过程故障检测中具有明显的优越性。 相似文献
7.
基于主元分析(PCA)的统计检测方法已经被广泛应用于各种化工过程的故障检测和识别.移动主元分析(moving principal component analysis,简称MPCA)算法基于PCA,根据主元子空间的变化来判断故障是否发生.然而,基于主元分析的统计检测方法是线性方法,无法有效应用于非线性系统.因此,提出一种适合于非线性系统的故障检测方法——基于核主角(kernel principal angle,简称KPA)的故障检测方法,其基本思想与MPCA相似,主要内容包括构建特征子空间和核主角测量两部分.TE过程故障检测仿真实验证明,基于核主角的故障检测方法优于传统的多元统计检测方法(cMSPC)和MPCA. 相似文献
8.
传统统计局部核主元分析(statistical local kernel principal component analysis, SLKPCA)在构造改进残差时未考虑样本的差异性,使得故障样本信息易于被其他样本所掩盖,针对该问题,提出一种基于加权统计局部核主元分析(weighted statistical local kernel principal component analysis, WSLKPCA)的非线性化工过程微小故障诊断方法。该方法首先利用KPCA获取过程的得分向量和特征值并构建初始残差。然后设计了一种基于测试样本与训练样本之间距离的加权策略构建加权改进残差,对含有较强微小故障信息的样本赋予较大权值,以增强故障样本的影响。最后,采用基于测量变量与监控统计量之间的加权互信息构建贡献图以识别故障源变量。在连续搅拌反应釜和田纳西伊斯曼(Tennessee Eastman, TE)化工过程上的仿真结果表明,所提方法具有良好的微小故障检测与识别性能。 相似文献
9.
一种基于改进KICA的非高斯过程故障检测方法 总被引:2,自引:1,他引:1
针对基于核独立元分析(kernel independent component analysis,KICA)的故障检测方法只考虑非高斯信息提取而忽略局部近邻结构保持的问题,提出基于改进KICA的过程故障检测方法。将KICA法中只考虑非高斯信息提取的负熵最大化准则转换为熵最小化准则,结合局部保持投影的相似局部近邻结构准则,提出了同时考虑非高斯信息提取和局部近邻结构保持的目标函数,通过粒子群优化算法进行全局寻优,然后建立监控统计量对过程进行监控。在Tennessee Eastman过程上的仿真结果说明,与基于KICA的故障检测方法相比,所提方法能够在保持数据集局部近邻结构的同时,提取非高斯信息,能够有效缩短故障检测的延迟时间,提高故障检测率。 相似文献
10.
基于变量子域PCA的故障检测方法 总被引:3,自引:3,他引:0
针对工业过程监控中传统主元分析(PCA)方法没有突出局部变量信息的问题,提出一种基于变量子域PCA(variable sub-region PCA,VSR-PCA)的故障检测方法。首先使用PCA将原始数据空间分解成主元子空间(principal component subspace,PCS)和残差子空间(residual subspace,RS),计算变量与PCS的互信息来度量两者的相关性并以此划分变量子域。然后在变量子域中计算局部T2统计量和局部SPE统计量,并通过贝叶斯推理整合所有子域的信息构造全局统计量,使得在利用所有过程信息的同时挖掘局部变量信息。在连续搅拌反应釜系统上的仿真结果表明,VSR-PCA方法具有更好的过程监控性能。 相似文献
11.
Dynamic kernel principal component analysis (DKPCA) has been frequently implemented for nonlinear and dynamic process monitoring of complex industrial processes. However, traditional DKPCA focuses only on the global structural analysis of data sets and strongly neglects the local information, which is equally essential for process detection and identification. In this paper, an improved DKPCA, referred to as the local DKPCA (LDKPCA), is proposed based on local preserving projections (LPP) for nonlinear dynamic process fault diagnosis. The method combines the advantages of LPP and DKPCA by utilizing the local structure feature to maintain the geometric structure of the data in a unified framework. To achieve a highly comprehensive feature extraction, the local characteristics are fused in DKPCA to produce an optimization objective. The neighbouring points of the new objective function projection in the feature space are still maintained in proximity, and the variance information is retained simultaneously. For the purpose of fault detection, two statistics, known as the T2 and squared prediction error (SPE) statistics, are constructed, based on the LDKPCA model, and used to monitor the latent variable space and the residual space, respectively. In addition, the sensitivity analysis is brought in for fault identification of the two statistics. Based on the experimental analysis using the shaft breakage data of an offshore oilfield electric submersible pump (ESP), the proposed method outperforms the conventional DKPCA in terms of fault monitoring performance. The experimental results demonstrate the potential of the method in nonlinear dynamic process fault diagnosis. 相似文献
12.
传统核独立成分分析(KICA)依据特征值的大小进行降维,但是特征值大并不一定取得的信息熵贡献度也是最大的。针对这个问题,提出一种基于核熵独立成分分析(KEICA)的故障检测方法。将训练数据集投影在高维核空间,通过对数据信息熵的贡献大小选取核主成分,并建立独立成分分析(ICA)模型。对训练样本求I2和SPE统计量,并利用核密度估计计算统计量的控制限。计算测试数据对训练数据的核矩阵,将其投影在ICA模型上并计算测试样本的统计量,统计量超出控制限的样本即可被识别为故障样本。将该方法用于非线性数值例子和Tennessee Eastman (TE)过程的故障检测,并与传统的核主成分分析(KPCA)、核熵成分分析(KECA)和KICA方法进行对比,表明KEICA的监测效果优于其他三种方法。 相似文献
13.
基于主元分析的延迟焦化过程连续故障检测策略 总被引:1,自引:0,他引:1
提出了一种新的主元分析在线故障检测策略,并以PSOG软件为平台,将其长期应用于某炼油厂延迟焦化过程的在线故障检测。结果表明了所提出故障检测策略的有效性,并从应用结果出发,提出了过程故障诊断应用于实际所需的进一步研究内容。 相似文献
14.
传统核独立成分分析(KICA)依据特征值的大小进行降维,但是特征值大并不一定取得的信息熵贡献度也是最大的。针对这个问题,提出一种基于核熵独立成分分析(KEICA)的故障检测方法。将训练数据集投影在高维核空间,通过对数据信息熵的贡献大小选取核主成分,并建立独立成分分析(ICA)模型。对训练样本求 和 统计量,并利用核密度估计计算统计量的控制限。计算测试数据对训练数据的核矩阵,将其投影在ICA模型上并计算测试样本的统计量,统计量超出控制限的样本即可被识别为故障样本。将该方法用于非线性数值例子和Tennessee Eastman(TE)过程的故障检测,并与传统的核主成分分析(KPCA)、核熵成分分析(KECA)和KICA方法进行对比,表明KEICA的监测效果优于其他三种方法。 相似文献
15.
In order to detect abnormal events at different scales, a number of multiscale multivariate statistical process control (MSPC) approaches which combine a multivariate linear projection model with multiresolution analysis have been suggested. In this paper, a new nonlinear multiscale-MSPC method is proposed to address multivariate process performance monitoring and in particular fault diagnostics in nonlinear processes. A kernel principal component analysis (KPCA) model, which not only captures nonlinear relationships between variables but also reduces the dimensionality of the data, is built with the reconstructed data obtained by performing wavelet transform and inverse wavelet transform sequentially on measured data. A guideline is given for both off-line and on-line implementations of the approach. Two monitoring statistics used in multiscale KPCA-based process monitoring are used for fault detection. Furthermore, variable contributions to monitoring statistics are also derived by calculating the derivative of the monitoring statistics with respect to the variables. An intensive simulation study on a continuous stirred tank reactor process and a comparison of the proposed approach with several existing methods in terms of false alarm rate, missed alarm rate and detection delay, demonstrate that the proposed method for detecting and identifying faults outperforms current approaches. 相似文献