首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 703 毫秒
1.
LNG动力船冷能的合理利用,对节能降耗具有重要意义。结合LNG动力船对惰性气体、电能、冷能等能源的需求,将LNG冷能进行发电、空气分离、海水淡化、冷冻冷藏、空调等分布式梯级利用。设计了3套梯级利用方案,并利用Aspen Plus软件对该3种方案进行了模拟优化。采用火用分析法对模拟结果进行分析,确定了火用效率最高的冷能利用方案。该方案中冷能梯级利用顺序为空气分离、冷能发电、海水淡化、空调、高温冷库,系统的火用效率达到34.59%。LNG动力船冷能梯级利用的研究为能量的高效利用提供了理论指导。  相似文献   

2.
为应对日益严格的船舶排放要求,以LNG运输船为母型船、以燃气轮机为主动力装置,设计出了2种LNG船联合动力方案。采用Aspen HYSYS软件对2种方案进行了模拟优化,采用?分析对2种方案进行了比较,确定了最佳的LNG船联合动力方案。该方案通过采用2级冷能发电系统、船舶空调系统、燃料加热系统、燃气轮机系统、余热锅炉系统和蒸汽轮机系统,对冷能与热能进行了充分的利用,?效率达49.32%,有利于实现船舶节能降耗。  相似文献   

3.
根据冷分析以及结合LNG接收站实际应用,提出高品位冷能发电和低品位冷能冷冻法海水淡化的LNG冷能梯级利用工艺,并对该工艺系统设备的选型、投资及经济效益进行分析。认为在LNG冷能发电系统中增加冷冻法海水淡化系统可大幅提高机组的经济效益,该工艺方案具有较高的推广价值。  相似文献   

4.
田堃  徐文东  张乐亨  程显弼 《广东化工》2014,41(21):128-130
结合LNG燃料船的实际情况及LNG冷能利用技术的研究现状,确定了适用于LNG燃料船的具备实施可行性的冷能利用方式,即LNG冷能用于冷库与冷水空调,并进行了相应的工艺流程设计。提出了LNG燃料船必须考虑的BOG回收处理的解决方案。在此基础上,采用"温度对口、梯级利用"的原则,设计了一套LNG燃料船的冷能综合利用方案,并以配备2*15 m3 LNG储罐的燃料货船进行工程化设计。结果表明:156 kg/h的LNG气化量能满足35 k W的冷库及冷水空调用冷需求,制冷系统节电效益约为5.4万元,BOG系统的回收效益约为2.3万元/年,系统具备良好的操作弹性。  相似文献   

5.
液化天然气冷能用于Stirling热机初探   总被引:2,自引:1,他引:1       下载免费PDF全文
谭宏博  厉彦忠 《化工学报》2007,58(6):1366-1370
从冷量和冷量(火用)的角度对液化天然气(LNG)冷能进行阐述,把LNG冷能回收方式分为冷量回收与动力回收。在利用LNG与环境大温差方面,提出采用斯特林热机利用LNG冷量(火用),并介绍了其基本工作原理。计算了新方案的热力性能,并与目前LNG冷能动力回收常用方案比较。结果表明:斯特林热机系统回收LNG冷能具有明显优势,开展LNG冷能回收与斯特林热机综合技术研究具有重要价值。  相似文献   

6.
LNG动力渔船的冷能利用技术初探   总被引:1,自引:1,他引:0       下载免费PDF全文
液化天然气(LNG)动力渔船推广前景广阔,为提高其LNG冷能的利用效率,对比分析了在船舶上利用LNG冷能的冷库和发电两种方案的利弊,并在此基础上提出了一种新的LNG冷能利用系统。通过热力学分析,获得了不同有机朗肯循环(ORC)冷凝温度、蒸发温度和载冷剂出口温度条件下系统的冷能利用率及效率。分析结果表明,系统冷能利用率随朗肯循环冷凝温度的降低、蒸发温度的升高而有显著提高;随载冷剂出口温度升高,系统冷能利用率稍有提高,但载冷剂流量显著增大。该系统冷能利用率及效率最大值分别达200.1%和28.6%,可实现LNG冷能利用率的大幅提升,节能效果显著。  相似文献   

7.
潘振  仇阳  乔伟彪  宗月  陈树军 《化工进展》2016,35(11):3720-3726
随着化石燃料的日益枯竭,回收工业过程中产生的低温余热已成为一种利用能源的重要方式,针对能量回收再利用的问题,将低温燃煤废气(70℃)及LNG(-162℃)冷能进行联合利用,以朗肯循环为基础,设计了一种可以在发电的同时,对CO2进行液化的LNG冷能三级式利用系统。详细分析了膨胀机入口压力和温度对LNG冷能三级式利用系统热力性能的影响,确定了循环参数,利用HYSYS进行模拟计算,并与之相对应的LNG冷能二级式利用系统进行比较。结果表明:设计的三级式系统发电单元的热效率及(火用)效率较二级式系统分别提升了57.74%及36.67%;三级式系统总净输出功较二级式系统提升了61.16%,按90%发电效率,0.5元/(kW·h)电价计算,三级式系统每年可带来约52万元的经济效益,CO2液化量为1580kg/h,每年可减排约CO2 1.365×104t,具有可观的经济效益和较好的减排效果。  相似文献   

8.
一种发电和天然气再液化相结合的LNG冷能利用系统   总被引:2,自引:1,他引:1       下载免费PDF全文
仇阳  潘振  李萍  杨帆  庞天龙  陈树军 《化工学报》2017,68(9):3580-3591
针对冷能回收再利用问题,提出了一种结合LNG和燃煤废气发电与天然气再液化的冷能利用系统并对系统进行了改进。对原系统和系统改进部分进行了热力学计算,详细分析了蒸发压力、蒸发温度对系统热力性能的影响,分析了天然气液化率对系统净输出功的影响,确定了发电循环的最佳蒸发压力、蒸发温度及天然气液化率的范围。结果表明:以回收1000 kg·h-1的LNG冷量(火用)计算,发电系统最大净输出功为69.6 kW·h,系统冷(火用)回收效率为41.43%;液化系统LNG液化率最大值为24%;系统改进后,发电系统净输出功和冷(火用)回收效率提高了17.85%,液化系统LNG液化率提高至28%。为日后LNG气化供气过程中的冷能利用提供一种新的思路。  相似文献   

9.
利用液化天然气冷能捕集CO_2的动力系统的集成   总被引:1,自引:0,他引:1  
熊永强  华贲 《化工学报》2010,61(12):3142-3148
为提高液化天然气(LNG)冷能的利用效率和CO2近零排放动力循环的发电效率、降低CO2减排的能耗,在对CO2近零排放动力循环利用LNG冷能进行火用分析的基础上,提出了一个以天然气为介质的Rankine循环与CO2近零排放动力循环进行集成的动力系统模型,可以在保持CO2预冷和液化所需冷能不变的情况下,将深冷部分的LNG冷火用转换为电能。研究结果表明,集成后动力系统中LNG冷火用的利用效率从34.9%提高到55.7%,整个动力循环的火用效率可达到57.9%。同时,对影响以天然气为介质的Rankine循环发电效率的参数进行了分析。  相似文献   

10.
液化天然气冷能构成及其利用方式探讨   总被引:6,自引:0,他引:6  
谭宏博  厉彦忠 《化学工程》2006,34(12):58-61
液化天然气(LNG)在汽化过程中会释放大量冷能,如果这部分冷能被成功回收利用,其节能效果和对系统效率的提高都十分显著。文中对LNG冷能从冷量和冷量的角度进行分析,把LNG冷能回收方式分为冷量回收与冷量回收,揭示了目前各种LNG冷能回收利用形式的能量利用实质:发电、空分中主要是利用LNG的冷量;冷藏、空调和制干冰利用了LNG的冷量。最后对不同的冷能回收系统提出指导性建议:动力回收系统中,应充分利用其在低温下的高品质能量;冷量回收系统中应减少跑冷。  相似文献   

11.
王弢  林文胜  顾安忠 《化工学报》2010,61(Z2):107-111
以LNG冷能和废热源驱动的有机朗肯循环可以提高系统的能源利用率。通过流程模拟软件HYSYS对使用不同工质的朗肯循环系统进行了模拟分析,结果表明,丙烷是用于低温朗肯循环最合适的工质。循环工质的蒸发温度高低对系统的净输出功及效率影响较为明显,废热烟气的流量或温度的提升有助于改善系统的性能。选定一个合适的冷凝温度,既能保证系统单位质量LNG所能输出的净功在一个合理的范围内,又可以改善系统效率。  相似文献   

12.
浅谈利用LNG冷能的发电系统   总被引:1,自引:0,他引:1  
易惠芳  洪建安  宋悦  李洋 《广州化工》2014,(6):142-143,146
LNG冷能发电是高效利用LNG冷能的一种形式,常用的冷能发电工艺有直接膨胀法、低温朗肯循环法、联合法、低温Brayton法和多级复合循环法,通过对几种工艺优缺点的比较,得出低温朗肯循环法在LNG冷能利用和冷回收方面优势突出,是LNG冷能发电工艺的发展趋势。  相似文献   

13.
Liquefied natural gas(LNG)is regarded as one of the cleanest fossil fuel and has experienced significant developments in recent years.The liquefaction process of natural gas is energy-intensive,while the regasification of LNG gives out a huge amount of waste energy since plenty of high grade cold energy(-160℃)from LNG is released to sea water directly in most cases,and also sometimes LNG is burned for regasification.On the other hand,liquid air energy storage(LAES)is an emerging energy storage tech-nology for applications such as peak load shifting of power grids,which generates 30%-40%of compres-sion heat(~200℃).Such heat could lead to energy waste if not recovered and used.The recovery of the compression heat is technically feasible but requires additional capital investment,which may not always be economically attractive.Therefore,we propose a power plant for recovering the waste cryo-genic energy from LNG regasification and compression heat from the LAES.The challenge for such a power plant is the wide working temperature range between the low-temperature exergy source(-160℃)and heat source(~200℃).Nitrogen and argon are proposed as the working fluids to address the challenge.Thermodynamic analyses are carried out and the results show that the power plant could achieve a thermal efficiency of 27%and 19%and an exergy efficiency of 40%and 28%for nitrogen and argon,respectively.Here,with the nitrogen as working fluid undergoes a complete Brayton Cycle,while the argon based power plant goes through a combined Brayton and Rankine Cycle.Besides,the economic analysis shows that the payback period of this proposed system is only 2.2 years,utilizing the excess heat from a 5 MW/40MWh LAES system.The findings suggest that the waste energy based power plant could be co-located with the LNG terminal and LAES plant,providing additional power output and reducing energy waste.  相似文献   

14.
提出了以氨水为工质的朗肯循环、燃气动力循环和液化天然气循环组成的混合动力循环系统,用于液化天然气冷能回收。建立了混合动力循环中换热和动力设备的能量平衡方程和可用能平衡方程,并以朗肯循环冷凝温度、朗肯循环透平进出口压力、液化天然气循环透平进出口压力为关键参数,分析了上述关键参数对混合动力循环热效率和可用能效率的影响。分析结果表明,混合动力循环热效率和可用能效率随朗肯循环冷凝温度升高、朗肯循环透平进口压力和液化天然气循环透平进口压力增大而提高,随朗肯循环透平出口压力和液化天然气循环透平出口压力增大而降低。  相似文献   

15.
对以LNG冷能液化CO2的朗肯循环式和耦合循环式技术方案进行了综述和分析。提出了改进的朗肯循环式技术方案并作了深入探讨,新方案采用CO2作为工质,利用LNG作为低温冷源和燃气轮机的排放废气作为高温热源来实现CO2的跨临界朗肯循环。而从燃气轮机排放的CO2废气在朗肯循环中放出热量后经压缩再和工质CO2一起与LNG换热进一步冷却成液态产品。利用Hysis软件优化计算,结果显示该工艺的比功为304.1 kJ/kg LNG,CO2液化率为0.5385 kg/kg LNG,有效能效率为43.70%。与现有技术方案相比,本技术方案的比功和有效能效率适中,CO2液化率最高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号